No 'brakes': Study finds mechanism for increased activity of oncogene in certain cancers

The increased activation of a key oncogene in head and neck cancers could be the result of mutation and dysfunction of regulatory proteins that are supposed to keep the gene, which has the potential to cause cancer, in check, according to a new study led by researchers at the University of Pittsburgh School of Medicine. The findings, published in the early online version of the Proceedings of the National Academy of Sciences, suggest a new target for drugs to treat head and neck tumors, as well as other cancers.

Many research teams have found activation and increased signaling of a protein known as Signal Transducer and Activator of Transcription 3 (STAT3) in different kinds of cancers, and it is associated with poor prognosis, said senior author Jennifer Grandis, M.D., Distinguished Professor of Otolaryngology, Pitt School of Medicine, and director of the Head and Neck Program at the University of Pittsburgh Cancer Institute (UPCI), partner with UPMC CancerCenter. In adult tissues, STAT3 triggers the production of other proteins that promote the growth and survival of cancer cells.

"Until now, the question of why STAT3 could be hyperactivated has gone unanswered," Dr. Grandis said. "Our findings reveal a possible mechanism for this abnormal activity, which could help us develop new ."

Noting that gene aberrations in STAT3 itself rarely occurred in head and neck cancers, she and her colleagues looked for in other proteins associated with increased activity of STAT3. To be activated, STAT3 must be phosphorylated, meaning a phosphate group is added to it. Many cancer drugs work by inhibiting enzymes called kinases that encourage this process. The team focused instead on the other side of the biochemical seesaw in which enzymes called phosphatases deactivate proteins by removing phosphates.

To their surprise, they found head and neck tumors with elevated STAT3 were associated with mutations in the PTPR family of phosphatases. When they reproduced the mutations in computational and lab models, they saw that they led to dysfunction of the enzymes.

"Because the phosphatases don't work properly, phosphate groups don't get removed from STAT3 appropriately, and it stays activated," Dr. Grandis explained. "These mutations essentially get rid of the brakes that might otherwise slow or even stop development."

It might be possible one day to screen tumors for mutations in the PTPR group and then treat them with drugs that inhibit STAT3's activity, she added.

More information: Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer, www.pnas.org/cgi/doi/10.1073/pnas.1319551111

Related Stories

Combination drug therapy urged to battle lung cancer

Feb 02, 2012

Combination drug therapy may be needed to combat non-small cell lung cancer (NSCLC), according to a study by the Translational Genomics Research Institute (TGen) and Van Andel Research Institute (VARI).

Recommended for you

Specific oxidation regulates cellular functions

23 minutes ago

For a long time, hydrogen peroxide has been considered as a dangerous metabolite that can damage cells through oxidation. This, however, is not its only role in the cell. Scientists from the German Cancer Research Center ...

New disease mechanism discovered in lymphoma

48 minutes ago

Programmed cell death is a mechanism that causes defective and potentially harmful cells to destroy themselves. It serves a number of purposes in the body, including the prevention of malignant tumor growth. ...

Researcher to cancer: 'Resistance will be futile'

8 hours ago

Turning the tables, Katherine Borden at the University of Montreal's Institute for Research in Immunology and Cancer (IRIC) has evoked Star Trek's Borg in her fight against the disease. "Cancer cells rapidly ...

How does prostate cancer form?

10 hours ago

Prostate cancer affects more than 23,000 men this year in the USA however the individual genes that initiate prostate cancer formation are poorly understood. Finding an enzyme that regulates this process ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.