New MRI approach dramatically speeds up results

by Helen Dodson
New MRI approach dramatically speeds up results
Credit: Shutterstock

(Medical Xpress)—Two Yale researchers have developed a way to significantly reduce the time it takes to get magnetic resonance imaging (MRI) results by encoding an entire image with just a single line of data. Their paper appears in PLOS ONE.

Unlike CT or X-ray scanning, MRI has traditionally been quite slow because it requires as many as 500 lines of data for a high-quality image. The data must be acquired line by line. Typically, it takes an hour to complete an entire MRI study comprised of many different images.

The Yale researchers altered the method of acquiring data, and introduced the use of curved magnetic fields that change over time. This enabled them to encode the entire image with one line of data.

They were able to obtain a complete a single image in around four milli-seconds. This new technique could enable better resolution for cardiac and brain images, and greatly reduce clinical exam times for standard MRI.

"We endeavored to develop a technique in which each pixel in an image is assigned a unique model signature," says author Todd Constable, professor of diagnostic radiology and neurosurgery at Yale School of Medicine, and professor of biomedical engineering. "The encoding is designed in a manner that ensures any non-unique codes are well separated spatially such that parallel receiver arrays can distinguish these components."

The approach is general and can be applied to any imaging sequence or any contrast mechanism. At this time, however, most MRI systems cannot generate the curved magnetic fields required to perform acquisition of data this rapidly. The authors say these capabilities need to be built into the next generation of magnets.

"Such accelerations in spatial encoding in MRI may shorten study times for patients, increasing comfort and throughput, and leading to decreased cost and increased accessibility of MRI," Constable added.

The rapid scan time offered by this new technique may open up new applications in diagnostic MRI and enhance other studies such as cardiac imaging applications. Fast scan times may also reduce the need for sedation of patients in pain or of children who can't stay still long enough for conventional MR imaging studies. It may also expand the use of MRI in emergency medical situations, the authors say.

More information: Galiana G, Constable RT (2014) "Single Echo MRI." PLoS ONE 9(1): e86008. DOI: 10.1371/journal.pone.0086008

add to favorites email to friend print save as pdf

Related Stories

A natural boost for MRI scans

Oct 21, 2013

Magnetic resonance imaging (MRI) is a technique widely used in medicine to create images of internal organs such as the heart, the lungs, the liver and even the brain. Since its invention in 1977, MRI has become a staple ...

Recommended for you

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.