Scientists offer new insight into neuron changes brought about by aging

January 22, 2014
The Scripps Florida team who worked on the new aging research includes (left to right) Valerio Rizzo, Beena Kadakkuzha, Sathya Puthanveettil and Komol Akhmedov. Credit: Photo by Andrea Curti, the Scripps Research Institute.

How aging affects communication between neurons is not well understood, a gap that makes it more difficult to treat a range of disorders, including Alzheimer's and Parkinson's disease.

A new study from the Florida campus of The Scripps Research Institute (TSRI) offers insights into how aging affects the brain's neural circuitry, in some cases significantly altering gene expression in single neurons. These discoveries could point the way toward a better understanding of how aging affects our cognitive ability and new therapeutic targets for the treatment of neurodegenerative disease.

"Although we don't know exactly why, we do know there is a signaling imbalance as we age, and we've captured these changes at the single neuron level," said Sathyanarayanan V. Puthanveettil, a TSRI assistant professor who led the work. "If we could identify the underpinnings of this mechanism, we may be able to target the specific mechanism to affect or reverse the aging process in human neurons."

To record the electrical and physiological properties of single neurons, the scientists created a new method and applied it to the marine snail Aplysia californica, a widely used animal model. Many Aplysia gene expression signatures have counterparts in the human genome.

Using this methodology, which was published in the Journal of Visualized Experiments, the scientists were then able to focus on neuron R15, a burst firing neuron that is implicated in the regulation of water content and reproduction, showing how its response to the neurotransmitter acetylcholine and gene expression changed with age.

In a study published in the journal PLOS ONE, the team described specific changes in burst firing and action potentials—which play a central role in cell-to-cell communication—during the aging of R15, suggesting that changes in the response to acetylcholine during aging has been conserved during evolution in organisms from snails to mammals.

In another study, published in published in BMC Genomics, the team revealed unexpected information about gene expression during R15 aging.

"Aging brings bidirectional changes in the gene expression," said Puthanveettil. "Some gene expression goes up; some goes down. This was surprising, particularly that some gene expression went up—something you don't necessarily associate with aging."

The study also noted that more than 1,000 DNA sequences are regulated differently in mature versus old R15 neurons. Among the specific biological pathways that are altered are networks involved in: cell signaling and skeletal muscular system development; cell death and survival; cellular function maintenance and embryonic development; and neurological diseases and developmental and hereditary disorders.

To confirm these findings, Puthanveettil and his colleagues also isolated and examined three other Aplysia neurons. Interestingly, while all the neurons showed changes in with age, these changes weren't necessarily similar among the neurons. Also the magnitude of change was specific to .

The scientists are now investigating how and why aging affects differently.

Explore further: Study reveals new link between Alzheimer's disease and healthy aging

More information: The first author of the Journal of Visualized Experiments study, "Aplysia Ganglia Preparation for Electrophysiological and Molecular Analyses of Single Neurons," is Komol Akhmedov of TSRI. Other authors include Beena M. Kadakkuzha, also of TSRI. For more information, see www.jove.com/video/51075/aplysia-ganglia-preparation-for-electrophysiological-molecular

The first authors of the PLOS ONE study, "Decreased response to acetylcholine during aging of Aplysia neuron R15," are Komol Akhmedov and Valerio Rizzo of TSRI. Other authors include Beena M. Kadakkuzha of TSRI, Christopher J. Carter and Neil S. Magoski of Queen's University, Canada, and Tom R Capo of the University of Miami. For more information, see www.ncbi.nlm.nih.gov/pmc/articles/PMC3874043/

The first author of the BMC Genomics study, "Age-Associated Bidirectional Modulation of Gene Expression in Single Identified R15 Neuron of Aplysia," is Beena M Kadakkuzha of TSRI. Other authors include Komolitdin Akhmedov, Mohammad Fallahi and Anthony C Carvalloza of TSRI and Tom R Capo of the University of Miami. For more information, see www.biomedcentral.com/1471-2164/14/880/abstract

Related Stories

Single gene mutation linked to diverse neurological disorders

October 9, 2013

A research team, headed by Theodore Friedmann, MD, professor of pediatrics at the University of California, San Diego School of Medicine, says a gene mutation that causes a rare but devastating neurological disorder known ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.