Jamming in tumors: How an immune molecule makes cancer cells starve

This is a fluorescence image showing a neutrophil (in red) going out of the blood vessel (in green) into a tumour. These immune cells facilitate tumour vessel growth, thus connecting the tumour with the vital blood supply. Credit: HZI/Jablonska-Koch

The name of the Interferon-beta (IFN-β) molecule and the English word "interfere" go back to the same Latin roots. And interfering is exactly what this messenger molecule, whose formation is increased in infections and cancer diseases, does. Consequently, it is often administered therapeutically. Amongst other things, it prevents formation of new blood vessels within a tumour, thus inhibiting its growth. Scientists at the Helmholtz Centre for Infection Research (HZI) have now discovered that IFN-β does so by impeding the communication between cancer tissue and immune cells. Their findings, published in the scientific magazine International Journal of Cancer, help to understand how this "jamming" can be used therapeutically.

Just like healthy cells, cells need nutrients and oxygen in order to survive. For this reason, a tumour of a certain size has to ensure that it is connected to the blood circulation. In doing this, it is supported by cells of the innate immune system, the neutrophil granulocytes or brief neutrophils, which are supposed to protect the body against pathogens.

Neutrophils normally circulate in the blood until—attracted by so-called chemokines—they enter the tissue where they ingest and destroy intruding pathogens. In addition, these cells are able to trigger the formation of . Presumably, this is how they help to repair tissue which has been destroyed by inflammation. However, neutrophils are also able to enter cancer tissue and contribute to its connection to the blood supply. This is probably the reason why detection of numerous neutrophils in a tumour is a sign of unfavourable patient prognosis.

Interferon-beta (IFN-beta) is used as a treatment for some tumours such as melanomas and leukaemia. Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, had shown recently that this messenger molecule can interfere with cancer growth by inhibiting the formation of new blood vessels. However, the way it does so remained a puzzle.

Now, researchers have succeeded in revealing the effect of IFN-beta on migration of pro-tumour neutrophils. "We wanted to understand why IFN-beta prevents the neutrophils from entering the tumour," says Dr Jadwiga Jablonska-Koch, scientist in the "Molecular Immunology" department at the HZI. "This would be the way for physicians to improve existing therapies and choose appropriate treatment for the individual patient."

To this end, the scientists followed the interaction between the cells. Messenger molecules such as chemokines are a means of communication frequently used for this purpose. They are produced by cells and bind to correspondingly shaped surface receptors. In the case of neutrophils, this is the receptor called CXCR2. It binds the chemokines CXCL1, CXCL2 and CXCL5. "We have seen that the concentration of the chemokines in the bone marrow, where the neutrophils originate, is low," says Dr Siegfried Weiss, head of the department in which Jablonska-Koch works. "On the other hand, we find a high concentration in the tumour, which attracts the neutrophils." Neutrophils migrate along the chemokine gradient into the tumour and once there, they themselves release the same chemokines in order to attract other neutrophils to obtain more support.

IFN-beta interferes with this communication: it makes the in the tumour produce fewer chemokines and no chemokine gradient is formed. "That way, fewer neutrophils enter the and fewer new blood vessels are formed," says Jablonska-Koch. "The tumour is not effectively connected to the vital and cannot grow efficiently." For that reason it is of therapeutical benefit to administer IFN-beta additionally. "We now better understand why IFN-beta helps in some cancers and that it is an important part of the body's own system for combating tumours," says Weiss. Their findings could help physicians to assess which patients might profit from administering IFN-beta and when ought to be an objective of cancer therapy.

More information: Jadwiga Jablonska, Ching-Fang Wu, Lisa Andzinski, Sara Leschner, Siegfried Weiß, CXCR2-mediated tumor associated neutrophil recruitment is regulated by IFN-β, International Journal of Cancer, 2013 DOI: 10.1002/ijc.28551

Related Stories

The immune system's guard against cancer

Apr 06, 2010

The human body has developed various mechanisms, through which it can protect itself against newly-developing cancer cells. For instance, killer-cells recognize and destroy altered cells in our organs every day. Once tumours ...

Overactive immune response blocks itself

Jul 26, 2013

As part of the innate immune system natural killer cells (NK cells) play an important role in immune responses. For a long time they have been known as the first line of defense in the fight against infectious ...

Rogue blood cells may contribute to post-surgery organ damage

Jun 26, 2011

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected ...

Recommended for you

Americans undergo colonoscopies too often, study finds

1 minute ago

Colonoscopies are a very valuable procedure by which to screen for the presence of colorectal cancer. However, it seems that healthy Americans who do undergo this sometimes uncomfortable examination often ...

User comments