New clues found to preventing lung transplant rejection

Organ transplant patients routinely receive drugs that stop their immune systems from attacking newly implanted hearts, livers, kidneys or lungs, which the body sees as foreign.

But new research at Washington University School of Medicine in St. Louis suggests that broadly dampening the immune response, long considered crucial to transplant success, may encourage lung transplant rejection.

In a surprising discovery, the researchers found that newly transplanted lungs in mice were more likely to be rejected if key immune were missing, a situation that simulates what happens when patients take .

These long-lived memory T cells are primed to "remember" pathogens that infiltrate the body and quickly trigger an during subsequent encounters. In heart, liver and kidney transplants, knocking down memory T cells with immunosuppressive drugs helps to ensure that the immune system recognizes a new organ as the body's own.

But not so in lung transplants, according to the new research published online Feb. 24 in the Journal of Clinical Investigation.

"In mice, memory T cells are critical for a lung transplant to have a good outcome," said co-corresponding author Daniel Kreisel, MD, PhD, a Washington University lung transplant surgeon at Barnes-Jewish Hospital. "A lot of transplant recipients receive drugs that indiscriminately deplete many different T cells. But in lung transplants, this strategy may contribute to organ rejection."

In light of the new findings, the researchers think current immune-suppression strategies should be re-evaluated in lung transplantation.

"Most immunosuppressive drugs were adopted for use in lung transplants based on their results in other solid organ transplants, without an appreciation that the lung is different," Kreisel said.

The research also may help explain, in part, why the success of lung transplants in people lags far behind other solid organ transplants.

Five years after lung transplantation, fewer than half of the transplanted lungs are still functioning, according to the U.S. Organ Procurement and Transplantation Network. This compares with five-year organ survival rates of about 70 percent for heart, kidney and liver transplants.

The poorer outcomes after lung transplantation are related largely to higher rejection rates, the researchers said. About 1,800 lung transplants are performed each year in the United States.

"The high failure rate of lung transplants is a major problem," said co-corresponding author Alexander Krupnick, MD, a Washington University surgeon at Barnes-Jewish Hospital. "Lungs are unique. Unlike other organs, they are continually exposed to bacteria, viruses and everything else in the environment, and we think this increases the risk of chronic rejection and the eventual failure of the organ."

Memory T cells regularly patrol the lungs, where they distinguish harmless challenges like cat dander or tree pollen from more serious insults like respiratory viruses or pathogenic bacteria. Without these cells, the immune system recognizes a newly transplanted lung as harmful and mounts an attack that eventually can lead to rejection of the organ.

As part of the study, the researchers performed lung transplants in mice. When memory T cells were absent in these mice, the newly transplanted lungs underwent rejection. The researchers found evidence of severe inflammation in the lungs, an indicator that the immune system had instigated an aggressive attack against the foreign organ.

However, when the scientists infused memory T cells into the lung recipients, they could reduce inflammation and prevent rejection. Further, they defined the molecular pathway by which memory T cells naturally dampen the body's response to lung transplants. Rather than attacking the lungs, memory T cells unleash a cascade of signaling molecules that encourage the to see the transplanted lung as the body's own.

Based on their findings, the researchers want to find ways to selectively target immunosuppression in lung transplants, to encourage memory T cells to thrive while eliminating other T cells that harm transplanted lungs.

"We really need to develop immune suppression strategies just for lung transplants that boost the ability of memory T cells to do their job," Krupnick said. "This may give newly transplanted lungs a much better chance of surviving long after the transplant is over."

add to favorites email to friend print save as pdf

Related Stories

Shedding new light on double-lung transplants

Jan 27, 2014

In the largest retrospective study to date using data from the United Network for Organ Sharing (UNOS) database for adult double-lung transplants, Temple University School of Medicine researchers have shown that there is ...

Diabetes key to transplant success, research finds

Jun 19, 2013

(Medical Xpress)—Better management of diabetes could dramatically improve outcomes for lung transplant patients, with new research showing that those without diabetes lived twice as long as transplant recipients ...

Recommended for you

The human race evolved to be fair for selfish reasons

13 hours ago

"Make sure you play fairly," often say parents to their kids. In fact, children do not need encouragement to be fair, it is a unique feature of human social life, which emerges in childhood. When given the o ...

Non-stop PET/CT scan provides accurate images

Sep 18, 2014

Siemens is improving PET/CT imaging and data quality while reducing radiation exposure. The Biograph mCT Flow PET/CT scanner is a new positron emission tomography/computed tomography (PET/CT) system that, ...

Experts: Chopin's heart shows signs of TB

Sep 17, 2014

The preserved heart of composer Frederic Chopin contains signs of tuberculosis and possibly some other lung disease, medical experts said Wednesday.

User comments