Coating could help prevent blood clots associated with implanted biomedical devices

February 28, 2014 by Matthew Chin

A team of researchers from UCLA and the University of Michigan has developed a material that could help prevent blood clots associated with catheters, heart valves, vascular grafts and other implanted biomedical devices.

Blood clots at or near implanted devices are thought to occur when the flow of , a naturally occurring clot-preventing agent generated in the blood vessels, is cut off. When this occurs, the devices can fail.

Some researchers have sought to solve this problem with that gradually release nitric oxide, but their supply of the agent is necessarily limited. Instead, the UCLA–Michigan team focused on an ultra-thin coating for the devices that acts as a chemical catalyst, generating clot-preventing molecules that can mimic the function of .

The researchers suggest this could offer a long-lasting and cost-effective solution to the problem of these . The study was published online this month in the journal Nature Communications.

For the device coating, the team used sheets of graphene, a one-atom-thick layer of graphitic carbon, into which they integrated two components—haemin and glucose oxidase. Both work synergistically to catalyze the production of nitroxyl, which can be used inside the blood like nitric oxide, although it contains one less electron. Nitroxyl has been reported as being analogous to nitric oxide in its clot-preventing capability.

"This may have interesting applications in a wide range of biomedical device coatings," said Teng Xue, the study's lead author and a UCLA graduate student.

"This work demonstrates how the exploration of nanomaterials, combined with knowledge in chemical catalysis and biochemistry can lead to unique functional structures benefiting biomedical research and beyond," said principal author Yu Huang, an associate professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science. "We will continue to explore molecular assemblies and conjugated catalytic systems as analogs to the functional proteins that can facilitate chemical transformations under mild conditions, like nature does."

Explore further: Researchers looking inside vessels to understand blood's ebb and flow

More information: "Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species." Teng Xue, et al. Nature Communications 5, Article number: 3200 DOI: 10.1038/ncomms4200. Received 30 June 2013 Accepted 06 January 2014 Published 11 February 2014

Related Stories

Heart attack research discovers new treatment target

February 10, 2014

Research led by David Lefer, PhD, Professor and Director of the Cardiovascular Center of Excellence at LSU Health Sciences Center New Orleans School of Medicine, demonstrates for the first time cross-talk between two protective ...

A coordinated response to cardiac stress

March 1, 2013

Myocardial hypertrophy, a thickening of the heart muscle, is an adaptation that occurs with increased stress on the heart, such as high blood pressure. As the heart muscle expands, it also requires greater blood flow to maintain ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.