Coating could help prevent blood clots associated with implanted biomedical devices

February 28, 2014 by Matthew Chin

A team of researchers from UCLA and the University of Michigan has developed a material that could help prevent blood clots associated with catheters, heart valves, vascular grafts and other implanted biomedical devices.

Blood clots at or near implanted devices are thought to occur when the flow of , a naturally occurring clot-preventing agent generated in the blood vessels, is cut off. When this occurs, the devices can fail.

Some researchers have sought to solve this problem with that gradually release nitric oxide, but their supply of the agent is necessarily limited. Instead, the UCLA–Michigan team focused on an ultra-thin coating for the devices that acts as a chemical catalyst, generating clot-preventing molecules that can mimic the function of .

The researchers suggest this could offer a long-lasting and cost-effective solution to the problem of these . The study was published online this month in the journal Nature Communications.

For the device coating, the team used sheets of graphene, a one-atom-thick layer of graphitic carbon, into which they integrated two components—haemin and glucose oxidase. Both work synergistically to catalyze the production of nitroxyl, which can be used inside the blood like nitric oxide, although it contains one less electron. Nitroxyl has been reported as being analogous to nitric oxide in its clot-preventing capability.

"This may have interesting applications in a wide range of biomedical device coatings," said Teng Xue, the study's lead author and a UCLA graduate student.

"This work demonstrates how the exploration of nanomaterials, combined with knowledge in chemical catalysis and biochemistry can lead to unique functional structures benefiting biomedical research and beyond," said principal author Yu Huang, an associate professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science. "We will continue to explore molecular assemblies and conjugated catalytic systems as analogs to the functional proteins that can facilitate chemical transformations under mild conditions, like nature does."

Explore further: A coordinated response to cardiac stress

More information: "Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species." Teng Xue, et al. Nature Communications 5, Article number: 3200 DOI: 10.1038/ncomms4200. Received 30 June 2013 Accepted 06 January 2014 Published 11 February 2014

Related Stories

A coordinated response to cardiac stress

March 1, 2013

Myocardial hypertrophy, a thickening of the heart muscle, is an adaptation that occurs with increased stress on the heart, such as high blood pressure. As the heart muscle expands, it also requires greater blood flow to maintain ...

Heart attack research discovers new treatment target

February 10, 2014

Research led by David Lefer, PhD, Professor and Director of the Cardiovascular Center of Excellence at LSU Health Sciences Center New Orleans School of Medicine, demonstrates for the first time cross-talk between two protective ...

Graphene-coated heart valves could sidestep harmful drugs

February 18, 2014

Every year thousands of people are fitted with artificial heart valves to replace their own malfunctioning valve. Many of these patients, however, have to remain on drugs that stop blood clotting on these artificial valves. ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.