Learning to see better in life and baseball

February 17, 2014

With a little practice on a computer or iPad—25 minutes a day, 4 days a week, for 2 months—our brains can learn to see better, according to a study of University of California, Riverside baseball players reported in the Cell Press journal Current Biology on February 17. The new evidence also shows that a visual training program can sometimes make the difference between winning and losing.

The study is the first, as far as the researchers know, to show that can produce improvements in in normally seeing individuals.

"The demonstration that seven players reached 20/7.5 acuity—the ability to read text at three times the distance of a normal observer—is dramatic and required players to stand forty feet back from the in order to get a measurement of their vision," says Aaron Seitz of the University of California, Riverside. For reference, 20/20 is considered normal .

In the training game, the players' task was to find and select visual patterns modeled after stimuli to which neurons in the early visual cortex of the brain respond best, Seitz explains. As game play commenced, those patterns were made dimmer and dimmer, exercising the players' vision as they searched.

"The goal of the program is to train the brain to better respond to the inputs that it gets from the eye," Seitz says. "As with most other aspects of our function, our potential is greater than our normative level of performance. When we go to the gym and exercise, we are able to increase our physical fitness; it's the same thing with the brain. By exercising our mental processes we can promote our mental fitness."

After the 2 month training period, players reported "seeing the ball much better," "greater peripheral vision," "easy to see further," "able to distinguish lower-contrasting things," "eyes feel stronger, they don't get tired as much," and so on.

The players also showed greater-than-expected improvements in their game. They were less likely to strike out and got more runs. The researchers estimate that those gains in batting statistics may have given the team an additional four or five wins in the 2013 season.

The researchers are now extending their work to include different groups, including members of the Los Angeles and Riverside Police Departments and people with low vision due to cataracts, macular degeneration, or amblyopia. They will also apply the same principles to other aspects of cognition, including memory and attention.

It all comes down to one thing: "Understanding the rules of brain plasticity unlocks great potential for improvement of health and wellbeing," Seitz says.

More information: "Improved vision and on field performance in baseball through perceptual learning." Deveau et al. Current Biology, 2014. dx.doi.org/10.1016/j.cub.2014.01.004

Related Stories

Vision restored with total darkness

February 14, 2013

Restoring vision might sometimes be as simple as turning out the lights. That's according to a study reported on February 14 in Current Biology, a Cell Press publication, in which researchers examined kittens with a visual ...

Strobe glasses improve hockey players' performance

December 13, 2013

Professional hockey players who trained with special eyewear that only allowed them to see action intermittently showed significant improvement in practice drills, according to a Duke University study with the NHL's Carolina ...

To keep their eye on the ball, batters mostly use their heads

January 7, 2014

Baseball players at bat follow coaches' advice to "keep your eye on the ball"—but head movements play a surprisingly important role in tracking pitches, suggests a study in Optometry and Vision Science, official journal ...

Recommended for you

Take a trip through the brain (w/ Video)

July 30, 2015

A new imaging tool developed by Boston scientists could do for the brain what the telescope did for space exploration. In the first demonstration of how the technology works, published July 30 in the journal Cell, the researchers ...

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.