Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
Mechanism behind the activation of dormant memory cells discovered

The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published in the highly respected journal Brain Structure Function.

"This may form the basis for the use of medications aimed at powering up dormant or less active memory cells," says Gert Lubec, Head of Fundamental Research / Neuroproteomics at the University Department of Paediatrics and Adolescent Medicine at the MedUni Vienna.

"This discovery has far-reaching consequences both for the molecular understanding of memory formation and the understanding of the clinical , which is already possible, of areas of the brain for therapeutic purposes," says the MedUni Vienna researcher. Similar principles are currently already being used in the field of . With this technology, an implanted device delivers electronic impulses to the patient's brain. This allows neuronal circuits to be influenced that control both behaviour and memory.

The latest findings very much form part of the highly controversial subject of "cognitive enhancement". Scientists are currently discussing the possibility of improving mental capacity through the use of drugs - including in healthy subjects of all age groups, but especially in patients with age-related impairments of cognitive processes.

With regard to the study design, two electrodes were implanted into the brain in an animal model. One transferred electrical impulses to stimulate the hippocampus, while the other transferred the electrical signals away. "These electrical potentials are the electrical equivalent of memory and are known as LTP (Long Term Potentiation)," explains Lubec. The generation of LTP in an in-vivo experiment was accompanied by specific changes in the receptor complexes - the same receptor complexes that are also activated during learning and .

Explore further: Learning requires rhythmical activity of neurons

More information: "Dorsal hippocampal brain receptor complexes linked to the protein synthesis-dependent late phase (LTP) in the rat." Lin Li, Han Wang, Maryam Ghafari, Gunyong An, Volker Korz, Gert Lubec. Brain Structure and Function. 01/2014; DOI: 10.1007/s00429-013-0699-z.

Related Stories

Learning requires rhythmical activity of neurons

September 26, 2012

The hippocampus represents an important brain structure for learning. Scientists at the Max Planck Institute of Psychiatry in Munich discovered how it filters electrical neuronal signals through an input and output control, ...

New depression treatments reported

February 14, 2014

New insights into the physiological causes of depression are leading to treatments beyond common antidepressants such as Prozac and Zoloft, researchers are reporting in the in the journal Current Psychiatry.

Recommended for you

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...

Going for a run could improve cramming for exams

October 19, 2016

Ever worried that all the information you've crammed in during a study session might not stay in your memory? The answer might be going for a run, according to a new study published in Cognitive Systems Research.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.