Mouse brain atlas maps neural networks to reveal how brain regions interact

Mouse brain atlas maps neural networks to reveal how brain regions interact
Green and red fluorescent dyes label two different cortical pathways; pink labels cortical projection neurons. Credit: Cell, Zingg et al.

Different brain regions must communicate with each other to control complex thoughts and behaviors, but relatively little is known about how these areas organize into broad neuronal networks. In a study published by Cell Press February 27th in the journal Cell, researchers developed a mouse whole-brain atlas that reveals hundreds of neuronal pathways in a brain structure called the cerebral cortex. The online, open access, interactive image database, called the Mouse Connectome Project, provides an invaluable resource for researchers interested in studying the anatomy and function of cortical networks throughout the brain.

"This study is the first comprehensive mapping of the most developed region of the : the cerebral cortex," says senior study author Hong-Wei Dong of the University of Southern California, Los Angeles. "Scientists can now use this anatomical map as a testable framework for exploring how each structure contributes to overall function."

The cerebral cortex—the outermost layered structure of neural tissue in the brain—plays a key role in regulating thoughts, emotions, and behaviors in mammals. Although scientists have mapped out neuronal connections on a small scale within specific parts of the mammalian brain, they have not achieved an accurate understanding of how cortical regions are organized into broad neuronal networks because they have used a patchwork of different techniques in different animal models. As a result, there has been a strong need for a thorough, rigorous, and consistent effort to map out spanning the entire mammalian cortex.

To address this need, Dong and his team generated a cortical connectivity atlas of the mouse brain using neuronal tracing techniques. They injected fluorescent molecules, which are visible under the microscope, into different areas across the entire mouse cortex. These molecules, which were transported along "cellular highways," labeled about 600 neuronal pathways. The researchers used a high-resolution microscope to scan the brain sections and create an image database of cortical connections.

Mouse brain atlas maps neural networks to reveal how brain regions interact
Green and red fluorescent dyes label two different cortical pathways; pink labels cortical projection neurons. Credit: Cell, Zingg et al.

When the researchers analyzed the connections, they found that the is a highly organized network, consisting of eight subnetworks whose coordinated activity reflects an animal's feelings and perceptions. Moreover, this information is shared between subnetworks in a very specific way. "These findings challenge the widespread assumption that the cortex is a single network in which everything is densely connected with everything else," Dong says.

This is a representative image in iConnectome. Fluorescent labeled axons (green) and neurons (pink) after tracers injected in the controlateral side of cortex. This large image is the closeup of the boxed area in the whole brain section in lower right corner. Credit: Cell, Zingg et al.

Moving forward, researchers can merge anatomical data from this important mammalian model system with the large amounts of existing molecular genetics data to identify fundamental types of nerve cells, an important objective of the NIH's BRAIN Initiative, which is part of a new Presidential focus aimed at revolutionizing our understanding of the human brain. "Determining the anatomical organization of the whole brain will be a fundamental and exciting step towards uncovering the structural underpinnings of and its dysfunction in neurological disorders," Dong says.

add to favorites email to friend print save as pdf

Related Stories

Researchers gain new insights into brain neuronal networks

Nov 04, 2013

A paper published in a special edition of the journal Science proposes a novel understanding of brain architecture using a network representation of connections within the primate cortex. Zoltán Toroczkai, profes ...

Brainstem discovered as important relay site after stroke

Feb 25, 2014

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlusion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has ...

Recommended for you

Omega-3 fatty acids and vitamin D may control brain serotonin

1 hour ago

Although essential marine omega-3 fatty acids and vitamin D have been shown to improve cognitive function and behavior in the context of certain brain disorders, the underlying mechanism has been unclear. In a new paper published ...

Researchers develop method for mapping neuron clusters

4 hours ago

A team of scientists has developed a method for identifying clusters of neurons that work in concert to guide the behavior. Their findings, which appear in the journal Neuron, address a long-standing mystery about the or ...

One brain area, two planning strategies

8 hours ago

Ready to strike, the spear fisherman holds his spear above the water surface. He aims at the fish. But he is misled by the view: Due to the refraction of light on the surface, he does not see the actual location ...

Study maps extroversion types in the brain's anatomy

15 hours ago

Everyday experience and psychological studies alike tell us that there are two different types of extroverts: The gregarious "people-persons" who find reward in sharing affection and affiliation with others, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.