Newly developed chemical restores light perception to blind mice

February 19, 2014

Progressive degeneration of photoreceptors—the rods and cones of the eyes—causes blinding diseases such as retinitis pigmentosa and age-related macular degeneration. While there are currently no available treatments to reverse this degeneration, a newly developed compound allows other cells in the eye to act like photoreceptors. As described in a study appearing in the February 19 issue of the Cell Press journal Neuron, the compound may be a potential drug candidate for treating patients suffering from degenerative retinal disorders.

The retina has three layers of , but only the outer layer contains the rod and that respond to light, enabling us to see the world. When the rods and cones die during the course of degenerative blinding diseases, the rest of the retina remains intact but unable to respond to light. Even though the innermost layer's nerve cells, called ganglion cells, remain connected to the brain, they no longer transmit information useful for vision.

Dr. Richard Kramer of the University of California, Berkeley and his colleagues have invented "photoswitch" chemicals that confer light sensitivity on these normally light-insensitive ganglion cells, restoring light perception in blind mice. An earlier photoswitch required very bright ultraviolet light, making it unsuitable for medical use. However, a new chemical, named DENAQ, responds to ordinary daylight. Just one injection of DENAQ into the eye confers light sensitivity for several days.

Experiments on mice with functional, nonfunctional, or degenerated rods and cones showed that DENAQ only impacts if the rods and cones have already died. It appears that degeneration in the outer retina leads to changes in the electrophysiology in the inner retina that enables DENAQ photosensitization, while the presence of intact photoreceptors prevents DENAQ action.

The selective action of DENAQ on diseased tissue may reduce side effects on healthy retina, exactly what is desired from a vision-restoring drug. "Further testing on larger mammals is needed to assess the short- and long-term safety of DENAQ and related chemicals," says Dr. Kramer. "It will take several more years, but if safety can be established, these compounds might ultimately be useful for restoring to blind humans. How close they can come to re-establishing normal vision remains to be seen."

Explore further: Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

More information: Neuron, Tochitsky et al.: "Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells." dx.doi.org/10.1016/j.neuron.2014.01.003

Related Stories

Altering eye cells may one day restore vision

January 25, 2013

(Medical Xpress)—Doctors may one day treat some forms of blindness by altering the genetic program of the light-sensing cells of the eye, according to scientists at Washington University School of Medicine in St. Louis.

Exercise may slow progression of retinal degeneration

February 10, 2014

Moderate aerobic exercise helps to preserve the structure and function of nerve cells in the retina after damage, according to an animal study appearing February 12 in The Journal of Neuroscience. The findings suggest exercise ...

Recommended for you

New type of prion may cause, transmit neurodegeneration

August 31, 2015

Multiple System Atrophy (MSA), a neurodegenerative disorder with similarities to Parkinson's disease, is caused by a newly discovered type of prion, akin to the misfolded proteins involved in incurable progressive brain diseases ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

How neurons get their branching shapes

August 31, 2015

For more than a hundred years, people have known that dendritic arbors—the projections that neurons use to receive information from other neurons—differ in size and shape depending on neuron type. Now, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.