NIH study describes new method for tracking T cells in HIV patients

A team of researchers has reported a novel method for tracking CD4+ T cells in people infected with HIV. CD4+ T cells are critical for immune defense against an array of pathogens and are a primary target of HIV. In the study, researchers used a unique, replication-incompetent (defective) form of HIV identified in a patient in the early 1990s.

The defective virus had integrated into the genome of a single CD4+ T cell. Like a barcode, this "provirus" marked the originally infected CD4+ T cell and its progeny, enabling researchers to track its lineage for 17 years. This new method allows scientists to distinguish dividing cells from dying ones, something that has not been possible with existing labeling techniques, but is essential for studying how survive HIV infection.

The study, published in the online issue of AIDS, was conducted by Hiromi Imamichi, Ph.D., H. Clifford Lane, M.D., and others in the Laboratory of Immunoregulation at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The cell lineage is part of a subset of CD4+ T cells called "effector memory" (TEM) cells. This distinction is significant because it is currently believed that TEM cells last for only days or weeks. The NIAID investigators demonstrated that this subpopulation of T cells can persist for at least 17 years.

The researchers also observed in the of patients a higher frequency of defective HIV proviruses than what has been reported in previous work. Although these defective variants cannot produce an infectious virus, many retain the ability to generate small pieces of HIV, leading the researchers to speculate that these "foreign materials" within CD4+ T cells may play a key role in the ongoing immune activation that is characteristic of HIV infection, including in patients with "undetectable" virus in their blood.

More information: H. Imamichi et al. Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS. DOI: 10.1097/QAD.0000000000000223 (2014).

add to favorites email to friend print save as pdf

Related Stories

New memory for HIV patients

Mar 26, 2012

The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Scientists discover how HIV kills immune cells

Jun 05, 2013

Untreated HIV infection destroys a person's immune system by killing infection-fighting cells, but precisely when and how HIV wreaks this destruction has been a mystery until now. New research by scientists at the National ...

New target to fight HIV infection identified

Oct 01, 2013

A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

Recommended for you

Model explains why HIV prevention dosing differs by sex

22 hours ago

A mathematical model developed by NIH grantees predicts that women must take the antiretroviral medication Truvada daily to prevent HIV infection via vaginal sex, whereas just two doses per week can protect men from HIV infection ...

Tourism as a driver of illicit drug use, HIV risk in the DR

Oct 29, 2014

The Caribbean has the second highest global human immunodeficiency virus (HIV) prevalence in the world outside of Sub-Saharan Africa, with HIV/AIDS as leading cause of death among people aged 20–59 years within the region. ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.