NIH study describes new method for tracking T cells in HIV patients

February 3, 2014

A team of researchers has reported a novel method for tracking CD4+ T cells in people infected with HIV. CD4+ T cells are critical for immune defense against an array of pathogens and are a primary target of HIV. In the study, researchers used a unique, replication-incompetent (defective) form of HIV identified in a patient in the early 1990s.

The defective virus had integrated into the genome of a single CD4+ T cell. Like a barcode, this "provirus" marked the originally infected CD4+ T cell and its progeny, enabling researchers to track its lineage for 17 years. This new method allows scientists to distinguish dividing cells from dying ones, something that has not been possible with existing labeling techniques, but is essential for studying how survive HIV infection.

The study, published in the online issue of AIDS, was conducted by Hiromi Imamichi, Ph.D., H. Clifford Lane, M.D., and others in the Laboratory of Immunoregulation at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The cell lineage is part of a subset of CD4+ T cells called "effector memory" (TEM) cells. This distinction is significant because it is currently believed that TEM cells last for only days or weeks. The NIAID investigators demonstrated that this subpopulation of T cells can persist for at least 17 years.

The researchers also observed in the of patients a higher frequency of defective HIV proviruses than what has been reported in previous work. Although these defective variants cannot produce an infectious virus, many retain the ability to generate small pieces of HIV, leading the researchers to speculate that these "foreign materials" within CD4+ T cells may play a key role in the ongoing immune activation that is characteristic of HIV infection, including in patients with "undetectable" virus in their blood.

Explore further: New memory for HIV patients

More information: H. Imamichi et al. Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS. DOI: 10.1097/QAD.0000000000000223 (2014).

Related Stories

New memory for HIV patients

March 26, 2012

The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Scientists discover how HIV kills immune cells

June 5, 2013

Untreated HIV infection destroys a person's immune system by killing infection-fighting cells, but precisely when and how HIV wreaks this destruction has been a mystery until now. New research by scientists at the National ...

New target to fight HIV infection identified

October 1, 2013

A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

Recommended for you

Videos reveal how HIV spreads in real time

October 2, 2015

How retroviruses like HIV spread in their hosts had been unknown—until a Yale team devised a way to watch it actually happen in a living organism. The elaborate and sometimes surprising steps the virus takes to reach and ...

Researchers find proteins that shut down HIV-1

September 30, 2015

A pair of studies by researchers at the University of Massachusetts Medical School, the University of Trento in Italy, and the University of Geneva in Switzerland, point to a promising new anti-retroviral strategy for combating ...

An antibody that can attack HIV in new ways

September 11, 2015

Proteins called broadly neutralizing antibodies (bNAbs) are a promising key to the prevention of infection by HIV, the virus that causes AIDS. bNAbs have been found in blood samples from some HIV patients whose immune systems ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.