Study identifies protein to repair damaged brain tissue in MS

February 7, 2014

Vittorio Gallo, PhD, Director of the Center for Neuroscience Research at Children's National Health System, and other researchers have found a "potentially novel therapeutic target" to reduce the rate of deterioration and to promote growth of brain cells damaged by multiple sclerosis (MS). Current therapies can be effective in patients with relapsing MS, but have little impact in promoting tissue growth.

The brain produces new cells to repair the damage from MS years after symptoms appear. However, in most cases the cells are unable to complete the repair, as unknown factors limit this process. In MS patients, in random patches, or lesions, leads to destruction of myelin, the fatty covering that insulates nerve cell fibers called axons in the brain, and aids in transmission of signals to other neurons.

In yesterday's publication of Neuron, Gallo, who also is a professor of pediatrics at the George Washington University School of Medicine and Health Sciences (SMHS), reported identifying a small protein that can be targeted to promote repair of damaged tissue, with therapeutic potential. The molecule, Endothelin-1 (ET-1), is shown to inhibit repair of myelin. Myelin damage is a hallmark characteristic of MS. The study demonstrates that blocking ET-1 pharmacologically or using a genetic approach could promote myelin repair.

Repair of damaged MS plaques is carried out by endogenous oliogdendrocytle progenitor cells (OPCs) in a process called remyelination. Current MS therapy can be effective in patients with relapsing and remitting MS, but "have little impact in promoting remyelination in tissue," Gallo said. Several studies have shown that OPCs fail to differentiate in chronic MS lesions.

Targeting ET-1 is a process that involves identifying signals in cells that could promote lesion repair. "We demonstrate that ET-1 drastically reduces the rate of remyelination," Gallo said. As such, ET-1 is "potentially a to promote lesion repair in deymyelinated tissue." It could play a "crucial role in preventing normal myelination in MS and in other demyelinating diseases," Gallo said.

More information: www.cell.com/neuron/abstract/S0896-6273(13)01083-0

Related Stories

Bacterial toxin a potential trigger for multiple sclerosis

January 28, 2014

Researchers from Weill Cornell Medical College have added to the growing body of evidence that multiple sclerosis may be triggered by a toxin produced by common foodborne bacteria. The presented their research at the 2014 ...

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.