Protein seipin regulates fat development through cytoskeleton remodeling

February 12, 2014
Protein seipin regulates fat development through cytoskeleton remodeling
When insulin is present, the protein 14-3-3β (green) interacts with cofilin-1 (red) to reshape the cell’s internal structure and influence the development of fat cells. Credit: Oxford University Press

People with mutations in a gene called BSCL2 suffer from a rare medical condition known as lipodystrophy in which fat tissue is lost from where it is supposed to accumulate while being deposited at unusual sites around the body. However, the way in which these mutations lead to defects in the development and distribution of fat cells, or adipocytes, remained unclear.

Now, Weiping Han and co-workers from the A*STAR Singapore Bioimaging Consortium have dissected the molecular pathway by which seipin, the protein encoded by BSCL2, helps to remodel the cellular scaffolding in fat precursor cells—a process that is essential for proper fat formation.

To reveal the role of seipin in regulating the development of from , Han and his colleagues analyzed the protein players that interact with seipin using mass spectrometry techniques. Seipin is expressed in the endoplasmic reticulum, the organelle involved in trafficking molecules within the cell.

Han and his team discovered that seipin binds to a called 14-3-3β in the cytoplasm. In the presence of the hormone insulin, the 14-3-3β protein, a critical scaffolding molecule in signal transduction, subsequently recruits another protein called cofilin-1, which is otherwise found in the cell nucleus (see image). This second protein modulates actin microfilaments in the cytoskeleton that help to support the internal structure of the cell.

The researchers showed that initiation of this molecular cascade resulted in extensive remodeling of the during fat and maturation. Therefore, blocking the production of any of the four proteins in the pathway—seipin, 14-3-3β, cofilin-1 or actin—led to abnormal fat production in cell culture experiments. "Cytoskeleton remodeling is both necessary for, and a key regulator of, fat formation," explains Han.

Han suggests that the manipulation of any of the four proteins could form the basis of therapies for lipodystrophy. "The targeting of cytoskeleton remodeling may be a potential approach to promoting adipocyte development," he says. "This in turn will alleviate the overloading of lipids in non-adipose tissues and organs and the consequent insulin resistance—hallmarks of lipodystrophy."

Toward that end, Han and his colleagues have engineered a seipin-deficient mouse strain. The model mice develop a disease that looks similar to the lipodystrophy seen in humans. "We will test whether the manipulation of cytoskeleton remodeling can reverse the phenotype," Han explains, "and also whether this helps to alleviate the other associated metabolic phenotypes, such as insulin resistance."

Explore further: New hormone for lowering blood sugar

More information: Yang, W., Thein, S., Wang, X., Bi, X., Ericksen, R. E. et al. BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling. Human Molecular Genetics 23, 502–513 (2014).

Related Stories

New hormone for lowering blood sugar

April 3, 2012

New evidence points to a hormone that leaves muscles gobbling up sugar as if they can't get enough. That factor, which can be coaxed out of fat stem cells, could lead to a new treatment to lower blood sugar and improve metabolism, ...

Clues point to cause of a rare fat-distribution disease

March 20, 2013

Studying a protein that gives structure to the nucleus of cells, Johns Hopkins researchers stumbled upon mutations associated with familial partial lipodystrophy (FPLD), a rare disease that disrupts normal patterns of fat ...

Reducing liver protein SIRT1 levels

January 22, 2014

A new study led by Boston University School of Medicine (BUSM) demonstrates that the abnormal metabolism linked to obesity could be regulated in part by the interaction of two metabolic regulators, called the NAD-dependent ...

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.