Rebuilding the brain after stroke

Enhancing the brain's inherent ability to rebuild itself after a stroke with molecular components of stem cells holds enormous promise for treating the leading cause of long-term disability in adults.

Michael Chopp, Ph.D., Scientific Director of the Henry Ford Neuroscience Institute, will present this approach to treating Thursday, Feb. 13, at the American Heart Association's International Stroke Conference in San Diego.

Although most stroke victims recover some ability to voluntarily use their hands and other body parts, half are left with weakness on one side of their body, and a substantial number are permanently disabled.

No treatment currently exists for improving or restoring this lost motor function in stroke patients, mainly because of mysteries about how the brain and nerves repair themselves.

But Dr. Chopp and other Henry Ford scientists may have solved some of these mysteries through experiments at the molecular level identifying and testing components of .

"Even in older people, the central nervous system is highly plastic, meaning it has a unique ability to change and rebuild itself," Dr. Chopp explains. "We have demonstrated that this plasticity can be stimulated to promote neurological recovery after a stroke."

One such therapy involves proteins that shape the developing brain, specifically a type that releases , or tPA, which causes axons and dendrites – the brain's neural cables and communications network – to rewire.

"We have shown that administering tPA in a nasal spray promotes this rewiring and significantly enhances neurological recovery," Dr. Chopp says.

Dr. Chopp will also speak at the AHA conference about other microscopic material in stem cells called exosomes that offer a "robust" treatment for stroke's crippling effects.

These blister-like microscopic "bubbles" were once were thought to carry and get rid of "old" proteins that were no longer needed by the body. However, exosomes were recently found to provide an essential form of "communication" between using "packages" sent out by stem cells with vital directions for gene regulation.

This is done through microRNA, master molecular switches that alter brain cells and promote recovery from trauma.

Dr. Chopp and his team have shown and confirmed that works by firing off these "information bullets."

But they have also shown that neurological diseases can be treated with exosomes alone, separate from stem cells.

"This approach may be a revolutionary way to successfully treat stroke and many other diseases," Dr. Chopp says.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Emotional adjustment following traumatic brain injury

18 hours ago

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments