Scientists find mechanism that helps HIV evade antibodies, stabilize key proteins

February 3, 2014

NIH scientists have discovered a mechanism involved in stabilizing key HIV proteins and thereby concealing sites where some of the most powerful HIV neutralizing antibodies bind, findings with potential implications for HIV vaccine research.

Numerous spikes jut out of the surface of HIV, each containing a set of three identical, bulb-shaped proteins called gp120 that can be closed together or spread apart like the petals of a flower. Some of the most important sites targeted by HIV neutralizing antibodies are hidden when the three gp120s, or the trimer, are closed, and the gp120 trimer remains closed until the virus binds to a cell.

The researchers discovered that certain located on the gp120 protein undergo a process that stabilizes the trimer in its closed position. In this process, called sulfation, the amino acids acquire a sulfur atom surrounded by four oxygen atoms. By either blocking or increasing sulfation of these amino acids, the researchers changed the sensitivity of the virus to different , indicating that the trimer was being either opened or closed.

The scientists suggest that if the synthesized gp120 widely used in HIV research were fully sulfated during manufacture, the resulting product would adopt a more true-to-life structure and more closely mirror the way the immune system sees unbound HIV. This might help generate a more effective HIV . The researchers add that full sulfation of gp120 may enable scientists to crystallize the molecule more readily, which also could advance HIV vaccine design.

More information: R Cimbro et al. Tyrosine sulfation in the second variable loop (V2) of HIV-1 gp120 stabilizes V2-V3 interaction and modulates neutralization sensitivity. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1314718111 (2014).

Related Stories

New artificial protein mimics a part of the HIV outer coat

October 22, 2013

A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to ...

Recommended for you

Potential new HIV therapy seen in immune cells

June 29, 2015

A research team led by Weill Cornell Medical College scientists has discovered a way to limit replication of the most common form of HIV at a key moment when the infection is just starting to develop. The study, published ...

Vitamin D status related to immune response to HIV-1

June 15, 2015

Vitamin D plays an important part in the human immune response and deficiency can leave individuals less able to fight infections like HIV-1. Now an international team of researchers has found that high-dose vitamin D supplementation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.