Researchers find basal forebrain controls decision-making speed in rodents

Neural activity in the basal forebrain (BF) leads to a faster and more precise response to reward-based stimuli in rats, report Irene Avila and Shih-Chieh Lin of the National Institute on Aging at NIH, in the March 18, 2014 issue of PLOS Biology.

Stimuli that predict important behavioral outcomes such as a reward or punishment are known as motivationally salient. Quick decision speed, especially in response to such motivational salient stimuli, is important for survival in animals. In humans, slowed decision speed is a key feature in depression, schizophrenia, and cognitive aging.

Rats were trained to respond to two sound associated with either large or small rewards. Researchers found that BF , located in the bottom front part of the brain at the base of the cerebral cortex, responded more strongly to the sound associated with the larger reward. Artificially stimulating the BF neurons shortly after this motivationally salient signal led to faster and more precise reaction times.

This study helps describe an important function of an otherwise poorly understood group of neurons. While more research is needed, these findings could have clinical implications for treating human conditions related to slow decision-making speeds.

More information: "Motivational Salience Signal in the Basal Forebrain Is Coupled with Faster and More Precise Decision Speed" by Avila, I and Lin, S-C. PLOS Biology. 12(3):e1001811. DOI: 10.1371/journal.pbio.1001811. March 2014.

add to favorites email to friend print save as pdf

Related Stories

Research maze puts images on floor, where rodents look

Feb 26, 2014

A rodent in a maze is a staple—even a stereotype—of experimental psychology research. But the maze in the lab of Rebecca Burwell, professor of cognitive, linguistic, and psychological sciences at Brown University, is ...

Problem-solving governs how we process sensory stimuli

Jun 25, 2013

Various areas of the brain process our sensory experiences. How the areas of the cerebral cortex communicate with each other and process sensory information has long puzzled neu-roscientists. Exploring the ...

Recommended for you

New ALS associated gene identified using innovative strategy

3 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

4 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

4 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

8 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

8 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments