Study points to new biological mechanisms, treatment paradigm for kidney disease

Prevention and reversal of chronic kidney disease is an urgent public health need. The disease affects 1 in 10 Americans, is debilitating and deadly, and existing drugs, at best, offer only mild delay in progression to end-stage kidney failure. New research led by Icahn School of Medicine at Mount Sinai investigators has uncovered abnormal molecular signaling pathways from disease initiation to irreversible kidney damage, kidney failure, and death. Results from their preclinical and human research are published online March 3 in the Journal of Clinical Investigation.

"Our group is the first to show that endothelial mitochondrial oxidative stress [damage to blood vessel lining that affects the energy-producing part of the cell caused by oxidative stress] regulates the passage of proteins from blood to urine and filtration of waste products in the kidney," said Erwin Bottinger, MD, Director of the Charles Bronfman Institute for Personalized Medicine, and the study's senior author. Specifically, the researchers found albuminuria (protein in the urine) and depletion of the cells that form the kidney's glomerular filtration barrier. "These findings were unexpected and open the door for developing new therapeutic targets," Dr. Bottinger added.

In the preclinical part of the research, investigators used a mouse model to induce scarring in the filtration part of the kidney, or glomeruli. This allowed progressive amounts of protein to pass into the urine and interfered with the clearance of waste products by the kidney. Essentially, the researchers were examining how different signaling mechanism and cellular interactions work, and how when they are disturbed, they promote chronic kidney disease.

Initially, key cells of the glomerular filtration barrier, also called podocytes, cause alterations in endothelin-1, a vasoconstrictor, activating the endothelin receptor A. The activated endothelin receptor A triggered disturbances manifested as endothelial mitochondrial oxidative stress.

The research team was able to confirm that this worked the same way in humans. They studied , comparing ten biopsies with glomerular sclerosis with six controls. Like in the animal models, the researchers confirmed activated endothelin receptor A and endothelial mitochondrial dysfunction in human glomerular sclerosis biopsies, but not in controls.

"These processes were absolutely essential in causing protein in the urine [or albuminuria], injured podocytes (tiny ball-shaped structures that constrict the blood vessels in the filtering part of the kidney), and cause scarring, all of which can ultimately lead to long-term, irreversible kidney disease. "This is called crosstalk and it is poorly understood," said Ilse S. Daehn, PhD, the study's lead researcher, and Assistant Professor of Medicine in the Division of Nephrology, at the Icahn School of Medicine at Mount Sinai. "We hope that these novel crosstalk findings lead to new therapies that help reverse or arrest chronic kidney disease, which affect millions of Americans," added Dr. Daehn.

Antioxidants that target the mitochondria and endothelin antagonists would alter the paradigm for preventing cell depletion and scarring of the filtration part of the kidney. "There is a pressing unmet medical need to prevent or reverse chronic ," Dr. Bottinger stressed. "The renin angiotensin inhibitors and angiotensin receptor blockers that are now widely used have not been proven effective in preventing end stage . We need more effective drugs to treat the millions of Americans suffering from with the goal to eliminate its progression to end- stage failure and with it the need for chronic dialysis and ."

add to favorites email to friend print save as pdf

Related Stories

Targeting certain kidney cells may help treat kidney failure

Jan 09, 2014

New research reveals that certain cells contribute to kidney function decline, making them attractive targets for treatments against kidney failure. The findings will appear in an upcoming issue of the Journal of the American So ...

Kidney damage in first responders linked to 9/11

Nov 09, 2013

For the first time, researchers have linked high levels of inhaled particulate matter by first responders at Ground Zero to kidney damage. Researchers from the WTC-CHEST Program, a subset of the World Trade Center Health ...

Recommended for you

WHO: Ebola vaccine trials in W. Africa in January

2 hours ago

Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe, a top World Health Organization official ...

Ebola cases rise sharply in western Sierra Leone

2 hours ago

After emerging months ago in eastern Sierra Leone, Ebola is now hitting the western edges of the country where the capital is located with dozens of people falling sick each day, the government said Tuesday. So many people ...

User comments