'Seeing' bodies with sound (no sight required)

People born unable to see are readily capable of learning to perceive the shape of the human body through soundscapes that translate images into sound, according to researchers who report their findings in the Cell Press journal Current Biology on March 6. With a little training, soundscapes representing the outlines and silhouettes of bodies cause the brain's visual cortex—and specifically an area dedicated in normally sighted people to processing body shapes—to light up with activity.

With no more than 70 hours of training on average, study participants could recognize the presence of a human form. What's more, they were able to detect the exact posture of the person in the image and imitate it.

"The idea is to replace information from a missing sense by using input from a different sense," explains Amir Amedi of The Hebrew University of Jerusalem. "It's just like bats and dolphins use sounds and echolocation to 'see' using their ears."

"Imagine for instance a diagonal line going down from left to right; if we use a descending musical scale—going on the piano from right to left—it will describe it nicely," continues Ella Striem-Amit, also of The Hebrew University. "And if the diagonal line is going up from left to right, then we use an ascending musical scale."

The researchers first taught people to perceive simple dots and lines. Then those individuals learned to connect the lines with junctions or curves, gradually working up to more and more complex images.

The success of the sensory substitution approach suggests great potential for its use in therapy more broadly, the researchers say.

"We're beginning to understand [that] the brain is more than a pure sensory machine," Amedi says. "It is a highly flexible task machine. The time has come to revive the focus on practical visual rehabilitation with sensory substitution devices."

In the current study, the researchers used an algorithm they call vOICe, which translates images in black and white. But they've since developed a newer algorithm, EyeMusic, which incorporates color information through the use of different musical instruments. The EyeMusic app is freely available on iTunes, where the researchers hope it can be useful to the blind and the general public alike.

More information: Current Biology, Striem-Amit et al.: "Visual cortex extrastriate body-selective area activation in congenitally blind people 'seeing' using sounds." dx.doi.org/10.1016/j.cub.2014.02.010

add to favorites email to friend print save as pdf

Related Stories

How blind can 'read' shown in new research

May 16, 2012

A method developed at the Hebrew University of Jerusalem for training blind persons to "see" through the use of a sensory substitution device (SSD) has enabled those using the system to actually "read" an ...

A sonar vision system for the congenitally blind

Nov 29, 2012

A "sonar vision" system that enables people who are blind from birth to perceive the shape of a face, a house or even words and letters, is being developed by a team at the Hebrew University of Jerusalem. Using this device, ...

Recommended for you

New ALS associated gene identified using innovative strategy

14 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

14 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

14 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

18 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

18 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

winthrom
not rated yet Mar 06, 2014
Need to put this on Android also