Chronic pain research delves into the brain

March 12, 2014 by David Ellis

(Medical Xpress)—University of Adelaide researchers say new insights into how the human brain responds to chronic pain could eventually lead to improved treatments for patients.

Neuroplasticity is the term used to describe the brain's ability to change structurally and functionally with experience and use.

"Neuroplasticity underlies our learning and memory, making it vital during early childhood development and important for continuous learning throughout life," says Dr Ann-Maree Vallence, a Postdoctoral Fellow in the University of Adelaide's Robinson Institute.

"The mechanisms responsible for the development of chronic pain are poorly understood. While most research focuses on changes in the , this research investigates the role of in the development of chronic pain."

In Australia, approximately 20% of adults suffer moderate to severe chronic pain.

Dr Vallence, who is based in the Robinson Institute's Neuromotor Plasticity and Development Group, has conducted a study on patients with chronic tension-type headache (CTTH), a common chronic pain disorder. CTTH is characterised by a dull, constant feeling of pressure or tightening that usually affects both sides of the head, occurring for 15 days or more per month. Other symptoms include poor sleep, irritability, disturbed memory and concentration, and depression and anxiety.

"People living with chronic headache and other forms of chronic pain may experience reduced quality of life, as the pain often prevents them from working, amongst other things. It is therefore imperative that we understand the causes of chronic pain, not just attempt to treat the symptoms with medication," Dr Vallence says.

In this study, participants undertook a motor training task consisting of moving their thumb as quickly as possible in a specific direction. The change in performance (or learning) on the task was tracked by recording how quickly subjects moved their thumb. A non-invasive brain stimulation technique was also used to obtain a measure of the participants' .

"Typically, when individuals undertake a motor training task such as this, their performance improves over time and this is linked with a neuroplastic change in the brain," Dr Vallence says. "The people with no history of chronic pain got better at the task with training, and we observed an associated neuroplastic change in their brains. However, our chronic headache patients did not get better at the task and there were no associated changes in the brain, suggesting impaired neuroplasticity.

"These results provide a novel and important insight into the cause of chronic pain, and could eventually help in the development of a more targeted treatment for CTTH and other conditions," she says.

Explore further: Can meditation decrease chronic pain?

Related Stories

Can meditation decrease chronic pain?

October 23, 2013

A randomized controlled study published in the current issue of Psychotherapy and Psychosomatics has investigated the role of a special form of meditation (mindfulness) in Chronic pain.

Managing chronic bone and joint pain

February 19, 2014

Musculoskeletal pain of the bone, joint and muscles is one of the most common reasons for primary care visits in the United States. According to a literature review appearing in a recent issue of the Journal of the American ...

Recommended for you

Study identifies how brain connects memories across time

May 23, 2016

Using a miniature microscope that opens a window into the brain, UCLA neuroscientists have identified in mice how the brain links different memories over time. While aging weakens these connections, the team devised a way ...

The brain needs cleaning to stay healthy

May 26, 2016

Research led by the Achucarro Basque Center for Neuroscience, the University of the Basque Country (UPV/EHU), and the Ikerbasque Foundation has revealed the mechanisms that keep the brain clean during neurodegenerative diseases.

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

Mimicking deep sleep brain activity improves memory

May 26, 2016

It is not surprising that a good night's sleep improves our ability to remember what we learned during the day. Now, researchers at the RIKEN Brain Science Institute in Japan have discovered a brain circuit that governs how ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.