Researchers present comprehensive 'roadmap' of blood cells

Research published online today in Blood, the Journal of the American Society of Hematology, presents an unprecedented look at five unique blood cells in the human body, pinpointing the location of key genetic regulators in these cells and providing a new tool that may help scientists to identify how blood cells form and shed light on the etiology of blood diseases.

Work published today in Blood is a subset of a much larger catalog of genetic information about nearly 1,000 and tissues unveiled today from the international research consortium "Functional Annotation of the Mamaliam Genome" (FANTOM, with this latest installment referred to as FANTOM5). Two flagship manuscripts describing pivotal observations from the expansive genome mapping project were also published online today in Nature; companion work is also being published today in BMC Genomics.

Blood comprises three main types of cells, erythrocytes (red ), leukocytes (white blood cells), and thrombocytes (platelets), all of which arise from . While the origin of these cells is known, the changes that take place in the stem cell to dictate whether it becomes red cell, white cell, or platelet – or even develops a genetic mutation – are not yet fully understood.

To provide insight into this process, investigators analyzed more than 30 different specialized subtypes of (including , T cells, monocytes, granulocytes, and B cells) and pinpointed the locations of key regions known as enhancers and promoters that determine if a particular gene will be active or silent in a cell. By identifying and mapping the locations of these regulators, investigators were able to correlate them with activity in specific genes.

"Until this point researchers could only recognize the unique signatures of enhancers and promoters; however, their exact location, as well as the association of specific enhancers to specific blood cells, remained unclear," said FANTOM5 Principal Investigator Alistair Forrest, PhD, of the RIKEN Centre for Life Science Technology in Yokohama, Japan. "This new, publicly available resource changes that, providing hematologists with a baseline reference for most blood cell types that allows them to trace the development of these cells and determine what may have occurred along the way to lead them to their final state."

With this new understanding of the location of enhancers and promoters used in each blood cell, investigators will now be better equipped to design experiments to determine how genes become activated, which could potentially lead to the development of strategies for turning off the gene to prevent or treat malignancies.

"The specific genetic alterations that are responsible for a normal cell turning into a cancer cell show up in the levels of messenger RNA in the cell, and these differences are often very subtle," said Dr. Forrest. "Now that we have these incredibly detailed pictures of each of these cell types, we can now work backwards to compare to the cells they came from originally to better understand what may have triggered the cells to malfunction, so we will be better equipped to develop new and more effective therapies."

More information:

  • Rönnerblad M, Andersson R, Olofsson T, et al. Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-482893.
  • Prasad P, Rönnerblad M, Arner E, et al. High-throughput transcription profiling identifies putative epigenetic regulators of hematopoiesis [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-483537.
  • Motakis E, Guhl S, Ishizu Y, et al. Redefinition of the human mast cell transcriptome by deep-CAGE sequencing [published online ahead of print March 26, 2014].Blood. DOI: 10.1182/blood-2013-02-483792.
  • Schmidl C, Renner K, Peter K, et al. Transcription and enhancer profiling in human monocyte subsets [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-484188.
  • Schmidl C, Hansmann L, Lassmann T, et al. The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations [published online ahead of print March 26, 2014]. Blood. DOI: 10.1182/blood-2013-02-486944.

add to favorites email to friend print save as pdf

Related Stories

First comprehensive atlas of human gene activity released

Mar 26, 2014

A large international consortium of researchers has produced the first comprehensive, detailed map of the way genes work across the major cells and tissues of the human body. The findings describe the complex networks that ...

Immune cells regulate blood stem cells

Feb 21, 2014

Researchers in Bern, Germany, have discovered that, during a viral infection, immune cells control the blood stem cells in the bone marrow and therefore also the body's own defences. The findings could allow ...

Rare form of leukemia found to originate in stem cells

Feb 13, 2014

(Medical Xpress)—An international team of researchers working out of the University of Toronto has found that one type of rare leukemia appears to get its start in stem cells. In their paper published in ...

Recommended for you

Stroke damage mechanism identified

16 hours ago

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.