Forgetting is actively regulated

This is the nervous system of the ringworm C. elegans. Credit: MCN

In order to function properly, the human brain requires the ability not only to store but also to forget: Through memory loss, unnecessary information is deleted and the nervous system retains its plasticity. A disruption of this process can lead to serious mental disorders. Basel scientists have now discovered a molecular mechanism that actively regulates the process of forgetting. The scientific journal Cell has published their results.

The is build in such a way, that only necessary information is stored permanently - the rest is forgotten over time. However, so far it was not clear if this process was active or passive. Scientists from the transfaculty research platform Molecular and Cognitive Neurosciences (MCN) at the University of Basel have now found a molecule that actively regulates memory loss. The so-called musashi protein is responsible for the structure and function of the synaptic connections of the brain, the place where information is communicated from one neuron to the next.

Using olfactory conditioning, the researchers Attila Stetak and Nils Hadziselimovic first studied the learning abilities of genetically modified ringworms (C. elegans) that were lacking the musashi protein. The experiments showed that the worms exhibited the same learning skills as unmodified animals. However, with extended duration of the experiment, the scientists discovered that the mutants were able to remember the new information much better. In other words: The genetically modified worms lacking the musashi protein were less forgetful.

Forgetting is no coincidence

Further experiments showed that the protein inhibits the synthesis of molecules responsible for the stabilization of . This stabilization seems to play an important role in the process of learning and forgetting. The researchers identified two parallel mechanisms: One the one hand, the protein adducin stimulates the growth of synapses and therefore also helps to retain memory; on the other hand, the musashi protein actively inhibits the stabilization of these synapses and thus facilitates memory loss. Therefore, it is the balance between these two proteins that is crucial for the retention of memories.

Forgetting is thus not a passive but rather an active process and a disruption of this process may result in serious . The musashi also has interesting implications for the development of drugs trying to prevent abnormal that occurs in diseases such as Alzheimer's. Further studies on the therapeutic possibilities of this discovery will be done.

More information: Hadziselimovic, N., Vukojevic, V., Peter, F., Milnik, A., Fastenrath, M., Fenyves, B., Hieber, P., Demougin, P., Vogler, C., de Quervain, D.J.F., Papassotiropoulos, A. & Stetak, A. Forgetting is regulated via Musashi-mediated translational control of the Arp2/3 complex. Cell, online.

add to favorites email to friend print save as pdf

Related Stories

Mechanism in Alzheimer's-related memory loss identified

Jan 19, 2014

Cleveland Clinic researchers have identified a protein in the brain that plays a critical role in the memory loss seen in Alzheimer's patients, according to a study to be published in the journal Nature Neuroscience and po ...

A mechanism to improve learning and memory

Feb 21, 2012

There are a number of drugs and experimental conditions that can block cognitive function and impair learning and memory. However, scientists have recently shown that some drugs can actually improve cognitive function, which ...

Scientists identify neurotranmitters that lead to forgetting

May 09, 2012

While we often think of memory as a way of preserving the essential idea of who we are, little thought is given to the importance of forgetting to our wellbeing, whether what we forget belongs in the "horrible memories department" ...

Recommended for you

From happiness to pain: Understanding serotonin's function

20 hours ago

In a study published today, in the scientific journal PLoS One, researchers at the Champalimaud Neuroscience Programme establish the effect of serotonin on sensitivity to pain using a combination of advanced genetic and op ...

The striatum acts as hub for multisensory integration

Aug 22, 2014

A new study from Karolinska Institutet in Sweden provides insight on how the brain processes external input such as touch, vision or sound from different sources and sides of the body, in order to select ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet Mar 20, 2014
If you confronted the researchers of this reported research with the suggestion:

Replace the word "forget" with the word "suppression"

without insinuating a poor choice of words, do the researchers ostracized (reject) or praise (welcome) the suggestion?

The effect is as dramatic as a "plus sign" [+] in mathematics replacing a "minus sign" [-] in an equation making no sense until the replacement is made.