Genetic variation linked to heart disease risk through RNA machinery

Researchers have pinpointed a new mechanism of how natural variation in our DNA alters an individual's risk for developing heart disease by interfering with the ability of a developmental gene to interact with a specialized type of RNA. This work expands on previous work identifying the "hidden" causes of complex disease risk, with the goal of unlocking new pathways and potential drug targets for cardiovascular disease.

This latest study led by Thomas Quertermous, MD at Stanford University and Georg Sczakiel, PhD at the University of Lübeck (Germany) was a joint effort between human geneticists and molecular biologists. Postdoctoral scholar, Clint Miller, PhD was the lead author of the study published online in PLOS Genetics on Mar 27.

Humans share approximately 99.9% of their DNA. The remaining differences in our DNA sequences arise though natural mutations during evolution. The most common form of variation is known as a single nucleotide polymorphism (SNP). After the completion of the Human Genome Project, SNPs became powerful tools to define the genetic basis of complex traits. Ultimately, large-scale scanning or genome-wide association studies (GWAS) revealed ~50 regions linked to . But it has been challenging to understand exactly why individuals harboring distinct DNA sequences are more likely than others to develop heart disease.

Previous studies have focused on how genetic variations alter interactions with DNA binding proteins, or transcription factors. Here, the researchers explored how a particular disease variant in the developmental gene TCF21 confers risk by altering RNA binding and stability. This variant disrupted the normal interaction with a small non-coding RNA (microRNA), and this disruption changed the levels of TCF21 in human vascular cells and diseased arteries. This represents the first report of a variant disrupting microRNA interactions.

"Atherosclerosis is a cumulative process that develops over a lifetime. While one's environment can be modified to reduce risk, this work highlights the role of genetics and epigenetics. Our genes are exquisitely controlled such that subtle changes in key switches can cause our system to go haywire," said Dr. Miller. "This work increases our understanding of heritable disease risk, as we move towards prevention of ."

More information: Miller CL, Haas U, Diaz R, Leeper NJ, Kundu RK, et al. (2014) Coronary Heart Disease-Associated Variation in TCF21 Disrupts a miR-224 Binding Site and miRNA-Mediated Regulation. PLoS Genet 10(3): e1004263. DOI: 10.1371/journal.pgen.1004263

add to favorites email to friend print save as pdf

Related Stories

Research sheds new light on heritability of disease

Jan 16, 2014

A group of international researchers, led by a research fellow in the Harvard Medical School-affiliated Institute for Aging Research at Hebrew SeniorLife, published a paper today in Cell describing a study aimed at better ...

Mechanism affecting risk of prostate cancer is found

Jan 10, 2014

A research group at Biocenter Oulu in Finland has identified a mechanism related to a transcription factor that binds much more strongly onto a particular SNP variant, thereby initiating a genetic programme which enhances ...

Recommended for you

Mutation disables innate immune system

18 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments