Lining up our sights

March 24, 2014
Credit: davidtorma4 / fotolia.com

Neurologists at Ludwig Maximilian University of Munich have studied the role of the vestibular system, which controls balance, in optimizing how we direct our gaze. The results could lead to more effective rehabilitation of patients with vestibular or cerebellar dysfunction.

When we shift the direction of our gaze, head and are normally highly coordinated with each other. Indeed, from the many possible combinations of speed and duration for such movements, the brain chooses the one that minimizes the error in reaching the intended line of sight. Dr. Nadine Lehnen, who heads a research group based at LMU's Center for Vertigo and Balance Disorders, in collaboration with her colleague Dr. Murat Saglam and Professor Stefan Glasauer of the Center for Sensorimotor Diseases at LMU, have now published a paper in the latest issue of the journal of Brain which investigates the significance of the for this optimization of motor coordination. The vestibular system in the brain is mainly responsible for the maintenance of balance and posture. The new work focused on subjects suffering from bilateral defects in the vestibular system (a complete vestibulopathy) or lesions in the cerebellum, which is functionally linked to it.

The authors of the new study had previously developed a mathematical model that enabled them to predict the horizontal movements of the head and eyes in response to the presentation of an off-center stimulus. "When subjected to repeated trials, healthy subjects are able to select the combination of eye and head movements that minimizes gaze shift variability," says Glasauer. They unconsciously choose the set of movements associated with the least error in the endpoint. Moreover, they can do this even when wearing a helmet with weights attached, which alters the moment of inertia of the head.

Learning to find the endpoint

However, who show defects in the vestibular system or the cerebellum have greater difficulty in controlling the direction of gaze in response to changes in their environment. "It turns out that information relayed from the balance organs to the vestibular system is essential for the optimization of gaze shifts," says Nadine Lehnen. Patients with complete bilateral vestibular loss are therefore unable to perform such shifts in the most efficient way. "In striking contrast, patients with cerebellar damage can, to a certain extent, learn to optimize certain parameters of head and eye movements, by adjusting the velocity of head movement, for instance," says Glasauer.

"These results provide the first evidence that the vestibular system is critical for optimizing voluntary movements", says Dr. Kathleen E. Cullen from McGill University in Montreal in a scientific commentary to the study appearing in the print issue of Brain. The new findings are of relevance for the rehabilitation of patients who have suffered damage to the cerebellum and patients with incomplete vestibulopathies. "We assume that gaze shift control in these patients can be enhanced by a rehabilitation training based on active head movements," says Nadine Lehnen. Head movements provide the vestibular feedback which generates the sensorimotor error messages that underlie the ability to learn how to optimize the coordination of eye and head movements. Instead of trying to hold their heads steady, these patients should be encouraged to actively move their heads, when they shift their gaze.

The question if patients with partial vestibulopathy can optimize gaze shift behavior by engaging in active head movements is now under investigation. This work forms part of a rehabilitation study which is being carried out at the Center for Vertigo and Balance Disorders at Munich University Hospitals, and is financed by the Federal Ministry for Education and Research.

Explore further: Researcher finds altered cerebella in those with Down syndrome

More information: brain.oxfordjournals.org/content/137/4/1080.abstract

Related Stories

Study offers hope for sufferers of vertigo

October 5, 2012

We've known for a while that the vestibular system in the inner ear is responsible for helping us keep our balance. And while researchers have already developed a basic understanding of how the brain constructs our perceptions ...

Recommended for you

Scientists see motor neurons 'walking' in real time

September 2, 2015

When you're taking a walk around the block, your body is mostly on autopilot—you don't have to consciously think about alternating which leg you step with or which muscles it takes to lift a foot and put it back down. That's ...

Neural basis of multitasking identified

September 1, 2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

New type of prion may cause, transmit neurodegeneration

August 31, 2015

Multiple System Atrophy (MSA), a neurodegenerative disorder with similarities to Parkinson's disease, is caused by a newly discovered type of prion, akin to the misfolded proteins involved in incurable progressive brain diseases ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.