Studying the metabolism of the malaria-causing parasite Plasmodium falciparum

March 19, 2014 by Lindsay Taylor Key

(Medical Xpress)—Fighting malaria in today's world will require a new, targeted approach, and Virginia Tech researchers are out for blood.

The parasites responsible for the mosquito-borne infectious disease are increasingly resistant to current drug approaches, and almost half of the world is at risk of contracting an illness.

Maria Belen Cassera, an assistant professor of in the College of Agriculture and Life Sciences, and a Fralin Life Science Institute affiliate, examines the metabolism of the -causing parasite Plasmodium falciparum in order to identify new drug targets.

Her newest project, funded by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health, will look at the crucial time when malaria is transmitted—when reproductive cell precursors known as gametocytes develop. Specifically, she wants to understand the role that specific metabolites called isoprenoids play in the early stages of development.

"We think that understanding the role of isoprenoids during gametocytogenesis and identifying metabolic steps absent or sufficiently different from its will allow us to design more efficient drugs to block , which is one of the key components for and eradication," Cassera said.

The metabolic pathways that the parasite uses are not found in humans, so pathway-specific drugs would have little effect on the human host.

"Dr. Cassera has taken a leap forward in malaria research by identifying a unique pathway at an essential step in parasite development and transmission to mosquitoes," said Vern Schramm, the Ruth Merns Chair and Professor of Biochemistry at the Albert Einstein College of Medicine, and former postdoctoral mentor to Cassera. "Dr. Cassera is one of a select few scientists who can work productively at the level of parasite biochemistry, biology, drug discovery, transmission, and even primate models of the disease. Her talents have been justly recognized by support from the NIH."

Explore further: Cancer-slowing compound also combats malaria, researchers find

Related Stories

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.