Studying the metabolism of the malaria-causing parasite Plasmodium falciparum

by Lindsay Taylor Key

(Medical Xpress)—Fighting malaria in today's world will require a new, targeted approach, and Virginia Tech researchers are out for blood.

The parasites responsible for the mosquito-borne infectious disease are increasingly resistant to current drug approaches, and almost half of the world is at risk of contracting an illness.

Maria Belen Cassera, an assistant professor of in the College of Agriculture and Life Sciences, and a Fralin Life Science Institute affiliate, examines the metabolism of the -causing parasite Plasmodium falciparum in order to identify new drug targets.

Her newest project, funded by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health, will look at the crucial time when malaria is transmitted—when reproductive cell precursors known as gametocytes develop. Specifically, she wants to understand the role that specific metabolites called isoprenoids play in the early stages of development.

"We think that understanding the role of isoprenoids during gametocytogenesis and identifying metabolic steps absent or sufficiently different from its will allow us to design more efficient drugs to block , which is one of the key components for and eradication," Cassera said.

The metabolic pathways that the parasite uses are not found in humans, so pathway-specific drugs would have little effect on the human host.

"Dr. Cassera has taken a leap forward in malaria research by identifying a unique pathway at an essential step in parasite development and transmission to mosquitoes," said Vern Schramm, the Ruth Merns Chair and Professor of Biochemistry at the Albert Einstein College of Medicine, and former postdoctoral mentor to Cassera. "Dr. Cassera is one of a select few scientists who can work productively at the level of parasite biochemistry, biology, drug discovery, transmission, and even primate models of the disease. Her talents have been justly recognized by support from the NIH."

add to favorites email to friend print save as pdf

Related Stories

New strategy emerges for fighting drug-resistant malaria

Jan 15, 2014

Malaria is one of the most deadly infectious diseases in the world today, claiming the lives of over half a million people every year, and the recent emergence of parasites resistant to current treatments ...

Recommended for you

Cellular protein may be key to longevity

8 hours ago

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

11 hours ago

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

11 hours ago

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments