Mutations in leukemia gene linked to new childhood growth disorder

March 9, 2014

Mutations in a gene associated with leukaemia cause a newly described condition that affects growth and intellectual development in children, new research reports.

A study led by scientists at The Institute of Cancer Research, London, identified mutations in the DNA methyltransferase gene, DNMT3A, in 13 children.

All the children were taller than usual for their age, shared similar facial features and had intellectual disabilities. The mutations were not present in their parents, nor in 1,000 controls from the UK population.

The new condition has been called 'DNMT3A overgrowth syndrome'.

The research is published today (Sunday) in the journal Nature Genetics and is a part of the Childhood Overgrowth Study, which is funded by the Wellcome Trust, and aims to identify causes of developmental disorders that include increased growth in childhood. The DNMT3A gene is crucial for development because it adds the 'methylation' marks to DNA that determine where and when genes are active.

Intriguingly, DNMT3A mutations are already known to occur in certain types of leukaemia. The mutations that occur in leukaemia are different from those in DNMT3A overgrowth syndrome and there is no evidence that children with DNMT3A mutations are at increased risk of .

Researchers at The Institute of Cancer Research (ICR), with colleagues at St George's, University of London, The Royal Marsden NHS Foundation Trust, and genetics centres across Europe and the US, identified the mutations after analysing the genomes of 152 children with overgrowth disorders and their parents.

Study leader Professor Nazneen Rahman, Head of Genetics and Epidemiology at The Institute of Cancer Research, London, and Head of Cancer Genetics at The Royal Marsden NHS Foundation Trust, said: "Our findings establish DNMT3A mutations as the cause of a novel human developmental disorder and add to the growing list of genes that appear to have dual, but distinct, roles in human growth disorders and leukaemias."

The new discovery is of immediate value to the families in providing a reason for why their child has had problems. Moreover, because the have arisen in the child and have not been inherited from either parent, the risk of another child in the family being similarly affected is very low. This is very welcome news for families.

Study co-leader Dr Katrina Tatton-Brown, Clinical Researcher at The Institute of Cancer Research, London, and Consultant Geneticist at St George's, University of London, said: "Having a diagnosis can make a real difference to families – I recently gave the result back to one of the families in which we identified a DNMT3A mutation and they greatly appreciated having a reason for their daughter's condition after many years of uncertainty."

Explore further: Gene discovered for Weaver syndrome

More information: Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability, DOI: 10.1038/ng.2917

Related Stories

Gene discovered for Weaver syndrome

December 15, 2011

Scientists have found a gene that causes Weaver syndrome, a rare genetic disorder that typically causes large size at birth, tall stature, developmental delay during childhood, and intellectual disability. Published today ...

Scientists discover gene linked to breast and ovarian cancer

December 17, 2012

(Medical Xpress)—A team of researchers led by the Institute of Cancer Research, London, have found that rare mutations in a gene called PPM1D are linked to an increased risk of breast and ovarian cancer. The mutations are ...

Discovery may help to explain mystery of 'missing' genetic risk

February 13, 2014

A new study could help to answer an important riddle in our understanding of genetics: why research to look for the genetic causes of common diseases has failed to explain more than a fraction of the heritable risk of developing ...

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.