Researchers use computers to 'see' neurons to better understand brain function

March 6, 2014
Indiana University-Purdue University Indianapolis' Gavriil Tsechpenakis, Ph.D., assistant professor of computer science mentors local high school student Tiange (Tony) Qu. Credit: School of Science at Indiana University-Purdue University Indianapolis (IUPUI)

A study conducted by local high school students and faculty from the Department of Computer and Information Science in the School of Science at Indiana University-Purdue University Indianapolis reveals new information about the motor circuits of the brain that may one day help those developing therapies to treat conditions such as stroke, schizophrenia, spinal cord injury or Alzheimer's disease.

"MRI and CAT scans of the human can tell us many things about the structure of this most complicated of organs, formed of trillions of neurons and the synapses via which they communicate. But we are a long way away from having imaging techniques that can show single neurons in a complex brain like the ," said Gavriil Tsechpenakis, Ph.D., assistant professor of computer science in the School of Science at IUPUI.

"But using the tools of artificial intelligence, specifically computer vision and image processing, we are able to visualize and process actual neurons of model organisms. Our work in the brain of a model organism—the fruit fly—will help us and other researchers move forward to more complex organisms with the ultimate goal of reconstructing the human central nervous system to gain insight into what goes wrong at the cellular level when devastating disorders of the brain and occur. This understanding may ultimately inform the treatment of these conditions," said Tsechpenakis.

In this study, which processed images and reconstructed neuronal motor circuitry in the brain, the researchers, who included two Indianapolis —Rachel Stephens and Tiange (Tony) Qu—collected and analyzed data on minute structures over various developmental stages, efforts linking neuroscience and computer science.

"Both high school students who worked on this study performed neuroscience and computation efforts similar to that conducted elsewhere by graduate students. It was impressive to see what sophisticated and key work they could—with mentoring—do," said Tsechpenakis.

Qu said the work was initially rather scary and intimidating but that he rapidly grew to appreciate the opportunity to work in the School of Science lab. "Unlike , we were not told how to get from point A to point B. Dr. Tsechpenakis explained what point A and B were and taught us how to figure out how to get from A to B."

Qu, a 17-year-old senior at Ben Davis High School, now sees neuroscience as a potential college major with biomedical research as an eventual career goal. He continues to work in the lab after school focusing on change over time in fruit fly larvae motor neurons.

Stephens, a senior at North Central High School, said she enjoyed the collaborative nature of the research, with computer scientists and life scientists working together on a problem.

"Dr. Tsechpenakis made it clear to us that different perspectives are necessary, and the ability to think about a problem is more valuable than the education and training you've had," she said. "Before I joined the lab I hadn't really thought about how could help heal." The 17-year-old plans a pre-med major in college and a career as a physician.

Explore further: Neon exposes hidden ALS cells

Related Stories

Neon exposes hidden ALS cells

April 30, 2013

A small group of elusive neurons in the brain's cortex play a big role in ALS (amyotrophic lateral sclerosis), a swift and fatal neurodegenerative disease that paralyzes its victims. But the neurons have always been difficult ...

How neurons control fine motor behavior of the arm

January 31, 2014

Motor commands issued by the brain to activate arm muscles take two different routes. As the research group led by Professor Silvia Arber at the Basel University Biozentrum and the Friedrich Miescher Institute for Biomedical ...

Finding could explain age-related decline in motor function

February 7, 2014

Scientists from the School of Medicine at The University of Texas Health Science Center at San Antonio have found a clue as to why muscles weaken with age. In a study published Feb. 5 in The Journal of Neuroscience, they ...

Can a virtual brain replace lab rats?

February 14, 2014

Testing the effects of drugs on a simulated brain could lead to breakthrough treatments for neurological disorders such as Parkinson's, Huntington's and Alzheimer's disease.

Brainstem discovered as important relay site after stroke

February 25, 2014

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlusion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has ...

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.