p53 cuts off invading cancer cells

Tumor cells expressing p53 (left) have fewer focal adhesions (red) and lower levels of active p130Cas (green)—rendering them noninvasive—compared with p53-deficient tumor cells (right). Credit: Yamauchi et al., 2014

The tumor suppressor p53 does all it can to prevent oncogenes from transforming normal cells into tumor cells by killing defective cells or causing them to become inactive. Sometimes oncogenes manage to initiate tumor development in the presence of p53, but, even then, the tumor suppressor doesn't give up and focuses its efforts instead on limiting the tumor's ability to invade and metastasize. A study in The Journal of Cell Biology uncovers one way that p53 acts to prevent cancer cell invasion.

A team of researchers, led by Keiko Kawauchi from the Mechanobiology Institute at the National University of Singapore, studied cells that had been transformed into cancer cells by Ras, the most common oncogene in human cancer. They compared Ras-transformed cells with and without p53 and observed that those expressing p53 were less invasive and formed fewer focal adhesions, the molecular linkages that connect the structural scaffolding within the cell to the extracellular matrix that surrounds the cell.

The researchers found that p53 limits invasion by initiating a chain of events that ultimately prevents the formation of lamellipodia, cell membrane protrusions that spur cell movement and invasion. p53 activates a mitochondrial protease called Omi, which is then released into the cytosol of the cell when Ras causes mitochondria to fragment. Omi cleaves actin filaments in the cytoskeleton, and the decrease in actin suppresses the activity of p130Cas, a focal adhesion signaling protein that promotes the formation of lamellipodia. With low levels of active p130Cas, cells don't form lamellipodia and are therefore less able to invade.

This video is not supported by your browser at this time.
In the absence of Omi, Ras-transformed tumor cells form invasive lamellipodial protrusions. Credit: Yamauchi et al., 2014

"Actin remodeling is a signal that prevents cell invasion," explains Kawauchi. "Most research has focused on how p53 prevents metastasis by regulating epithelial-to-mesenchymal transitions," a biological process by which gain migratory and invasive properties. In contrast, says Kawauchi, the new findings help explain how p53 affects the cytoskeletal processes within the cell that drive invasion.

More information: Yamauchi, S., et al. 2014. J. Cell Biol. DOI: 10.1083/jcb.201309107

add to favorites email to friend print save as pdf

Related Stories

A gene family that suppresses prostate cancer

Mar 13, 2014

Cornell University researchers report they have discovered direct genetic evidence that a family of genes, called MicroRNA-34 (miR-34), are bona fide tumor suppressors.

Tipping the balance between senescence and proliferation

Nov 15, 2013

An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Gene found to play role in early cancer

Aug 24, 2011

(Medical Xpress) -- Mutations to a gene called p53 have been linked to half of all cancers, leading to tumor growth and the spread of cancerous cells. Now, a Cornell-led study identifies for the first time the mechanisms ...

Recommended for you

Understanding your kidney tumor in 3D

24 minutes ago

Most patients rely on their doctors to decipher the black, white and gray images on their CT scans. But what if a patient could instead hold a 3D model made from the CT image in his hands? Suddenly, the picture ...

Biomarker in aggressive breast cancer identified

14 hours ago

Two Northwestern University scientists have identified a biomarker strongly associated with basal-like breast cancer, a highly aggressive carcinoma that is resistant to many types of chemotherapy. The biomarker, ...

MRI better detects recurrent breast cancer

15 hours ago

(HealthDay)—Single-screening breast magnetic resonance imaging (MRI) detects 18.1 additional cancers after negative findings with mammography and ultrasonography (US) per 1,000 women with a history of breast ...

Natural (born) killer cells battle pediatric leukemia

Aug 19, 2014

Researchers at Children's Hospital Los Angeles have shown that a select team of immune-system cells from patients with leukemia can be multiplied in the lab, creating an army of natural killer cells that ...

User comments