Using PET scanning to evaluate therapies of Menkes disease

March 26, 2014
Using PET scanning to evaluate therapies of Menkes disease
Sagittal section of brain PET image at 4 hrs after 64CuCl2 injection with disulfiram or D-penicillamine in MD model mice.

Scientists at the RIKEN Center for Life Science Technologies have used PET imaging to visualize the distribution in the body of copper, which is deregulated in Menkes disease, a genetic disorder, using a mouse model. This study lays the groundwork for PET imaging studies on human Menkes disease patients to identify new therapy options.

Menkes disease, though rare, is a fearsome . Most affected babies die within the first few years of life. The disease is caused by an inborn fault in the body's ability to absorb . The standard treatment today for the 1 in 100,000 babies affected by the disorder is to inject copper, but this therapy has limited efficacy. Eventually the treatment becomes ineffective, leading to neurodeneration, and the copper accumulates in the kidneys, sometimes leading to renal failure.

As a result, treatments have been sought that enhance the accumulation of injected copper in the brain while preventing its accumulation in the kidney. Recently, disulfiram, a drug developed to treat alcoholism, has been suggested as a therapy for Menkes disease, since one of its actions is to enhance this copper accumulation in the brain.

Now, in a landmark study published in the Journal of Nuclear Medicine, scientists at the RIKEN Center for Life Science Technologies in Kobe, Japan, in collaboration with paediatricians from Osaka City University and Teikyo University, have used (PET) to show that a combination of copper injections and disulfiram or D-penicillamine allows a greater movement of copper to the brain, where it is needed, without accumulating in the kidneys.

Using PET scanning to evaluate therapies of Menkes disease
Coronal section of whole-body PET image at 4 hrs after 64CuCl2 injection with disulfiram or D-penicillamine in MD model mice.

In the study, the researchers used Menkes Disease model mice, which have an inborn defect in , and injected copper-64, a radioactive isotope of copper, into the mice. They then used PET scanning, a non-invasive procedure, to visualize how the copper moved throughout the body. They compared mice injected with copper alone to mice injected with copper along with one of two other drugs, disulfiram or D-penicillamine, and the distribution of the copper throughout the body was observed for a four-hour period.

The results showed that the mice given copper along with disulfiram had a relatively high concentration of copper in the brain without a significant increase in the kidneys. Surprisingly, it showed that the amount of copper going to the brain in mice treated with disulfiram was actually higher than in those treated with copper alone, suggesting that the drug has an effect on the passage of copper through the blood-brain barrier.

According to Satoshi Nozaki, one of the co-authors, "This study demonstrates that PET imaging can be a useful tool for evaluating new treatments for Menkes disease." Looking to the future, he said, "Based on this study, we are planning to conduct clinical PET studies of patient with Menkes disease."

Explore further: Discovery helps explain how children develop rare, fatal disease

More information: Shiho Nomura, Satoshi Nozaki, Takashi Hamazaki, Taisuke Takeda, Eiichi Ninomiya, Satoshi Kudo, Emi Hayashinaka, Yasuhiro Wada, Tomoko Hiroki, Chie Fujisawa, Hiroko Kodama, Haruo Shintaku, Yasuyoshi Watanabe, "PET Imaging Analysis with 64Cu in Disulfiram Treatment for Aberrant Copper Bio-distribution in Menkes Disease Mouse Model", The Journal of Nuclear Medicine, 2014, DOI: 10.2967/jnumed.113.131797

Related Stories

Copper intake makes tumors breathe

November 14, 2013

Copper imbalances have been associated with a number of pathological conditions, including cancer. Publishing in PNAS scientists at EPFL have found that copper in drinking water – given at the maximum levels permitted in ...

Gene replacement treats copper deficiency disorder in mice

August 31, 2011

(Medical Xpress) -- Gene therapy plus an injection of copper dramatically improved survival in mice with a condition that mimics the often fatal childhood disorder Menkes disease, according to a study by researchers at the ...

Copper on the brain

May 27, 2013

(Medical Xpress)—The value of copper has risen dramatically in the 21st century as many a thief can tell you, but in addition to the thermal and electrical properties that make it such a hot commodity metal, copper has ...

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.