Scientists discover how Marburg virus grows in cells

March 13, 2014

A protein that normally protects cells from environmental stresses has been shown to interact Marburg virus VP24, allowing the deadly Marburg virus to live longer and replicate better, according to a cell culture study led by scientists at the Icahn School of Medicine at Mount Sinai. The investigators say that deciphering the molecular details of how Marburg virus and the host protein interact may help in developing inhibitors of the virus. Results from the study are published online March 13 in the peer-reviewed journal Cell Reports.

Infections with Marburg lead to death in as many as 90% of those infected. Once restricted to Africa, cases of the virus have been identified in travelers from Europe and the United States, making effective prevention and treatment a top biodefense priority.

"Marburg virus has been essentially untreatable," said the study's senior author, Christopher F. Basler, PhD, Professor of Microbiology, at the Icahn School of Medicine at Mount Sinai. "Our study shows that Marburg virus VP24 interacts with the host protein Keap1." Dr. Basler explained that Keap1 regulates the antioxidant response, normally protecting cells from harm. When the virus interacts with Keap1, Marburg virus-infected cells survive longer, facilitating virus growth.

The research builds on previous research in Dr. Basler's lab. Studying Ebola virus, they found that Ebola virus VP24 protein blocks interferon, an important part of the host defense against virus detection. Unlike Ebola virus, a different host protein was shown to interact with Marburg virus.

"If we can develop inhibitors, the virus will die and replicate more slowly – that's the hypothesis that we have now," said Dr. Basler. Next, his laboratory hopes to pursue research and development of targeted therapies.

Explore further: Research team identifies receptor for Ebola virus

Related Stories

Research team identifies receptor for Ebola virus

May 2, 2011

A team of researchers has identified a cellular protein that acts as a receptor for Ebola virus and Marburg virus. Furthermore, the team showed that an antibody, which binds to the receptor protein, is able to block infection ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.