Improved screening means new targets for pediatric neuroblastoma therapies

Neuroblastoma is one of the most common and lethal types of childhood cancers. In a paper published online today in OncoTarget, a researcher at the University of Texas Health Science Center at San Antonio unveils the important role of microRNAs in regulating neuroblastoma development, pointing to new therapeutic possibilities.

Neuroblastomas, which account for 15 percent of childhood cancer deaths, happen when some cells do not differentiate and grow as they should. A promising type of therapy called differentiation therapy targets these malignant cells so that they can resume the process of differentiating into mature cells.

Unlike conventional chemotherapies, this new approach to cancer therapy has fewer toxic side effects, and gives hope for a cancer treatment that is gentler on young bodies. But so far only a few differentiation agents have been successfully used to treat , and more than half of the young patients treated with such agents still see their return.

To find new treatments, researchers needed improved laboratory screening techniques, and now one has been developed by Liqin Du, Ph.D., an assistant professor in the Department of Cellular and Structural Biology, and her team at the Greehey Children's Cancer Research Institute at the UT Health Science Center.

MicroRNAs are small RNA molecules involved in gene expression, and play an important role in cell development. This screening approach revealed several microRNA molecules that induce the process of cell differentiation, and those are key to developing new drugs.

"Development of new agents for treating neuroblastoma has been greatly hampered by the lack of efficient high-throughput screening approaches," Dr. Du said. "In our study, we applied a novel high-content screening approach that we recently developed to investigate the role of microRNAs in neuroblastoma differentiation.

"We identified a set of novel microRNAs that are potent inducers of neuroblastoma cell differentiation and found that mimics (synthetic fragments of nucleic acid used to raise microRNA levels in cells) of some of the identified microRNAs are much more potent in inducing neuroblastoma than the current differentiation treatments.

"These mimics are promising new drugs for neuroblastoma differentiation therapy," Dr. Du said. "We look forward to investigating this further in the future."

add to favorites email to friend print save as pdf

Related Stories

Beta-blockers may boost chemo effect in childhood cancer

May 22, 2013

Beta-blockers, normally used for high blood pressure, could enhance the effectiveness of chemotherapies in treating neuroblastoma, a type of children's cancer, according to a new study published in the British Jo ...

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.