'Glue' holding together skin cells and other epithelial tissue more active than realized

The strong mechanical attachments – the "glue"—that hold together the cells of the skin and the other epithelial tissues of the body are the adherens junctions.

These junctions are responsible for maintaining the shape and integrity of the sheets of that line such as the , as well as the surfaces of structures such as the heart. Defects in the proteins of these attachments have been implicated as potential contributors to the development and spread of cancer.

Recent research on Drosophila flies, combined with previous studies in cell cultures, are challenging the traditional view that adherens junctions maintain tissue integrity by passively resisting disruptive forces.

In studies with Drosophila embryos, the Princeton University lab of Nobel laureate Eric Wieschaus, Ph.D., has uncovered the first evidence in living organisms that adherens junctions actively respond to mechanical cues by remodeling their own position and intensity, which in turn restructures the cells.

Mo Weng, Ph.D., postdoctoral fellow in the lab, used live imaging and quantitative image analysis of fixed and live embryos to determine that these changes depend on mechanical force mediated by the motor protein myosin and precede the changes in the distribution of cell polarity proteins, such as Bazooka, that are responsible for spatial organization of the cells.

Understanding the regulation and functioning of adherens junctions sheds light on the organization of multi-cellularity—from cell-cell contacts to the remodeling of tissues and organs during life.

More information: Abstract: "Mechanical force induced adherens junctions remodeling." Mo Weng2, Eric Wieschaus1,2. 1) Howard Hughes Medical Institute; 2) Molecular Biology, Princeton University, Princeton, NJ. Link: abstracts.genetics-gsa.org/cgi… il.pl?absno=14531606

add to favorites email to friend print save as pdf

Related Stories

Cellular Workouts Strengthen Endothelial Cells' Grasp

May 13, 2010

(PhysOrg.com) -- University of Pennsylvania bioengineers have demonstrated that the cells that line blood vessels respond to mechanical forces -- the microscopic tugging and pulling on cellular structures ...

Gauging the forces between cells

Jul 19, 2012

Cell-cell junctions are important for communication, transport, signalling, waste evacuation and water homeostasis. An European project has investigated how biophysical forces can influence the fulfilment ...

Recommended for you

Study clarifies parents as source of new disease mutations

13 hours ago

Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

How black truffles deal with the jumpers in their genome

22 hours ago

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments