Smart nanofibers to treat kidney failure

March 5, 2014 by Adarsh Sandhu
Smart nanofibers to treat kidney failure
The newly-fabricated nanofiber mesh for the removal of toxins from the blood, made by WPI-MANA researchers, may be incorporated into wearable blood purification systems for kidney failure patients.

A new technique for purifying blood using a nanofiber mesh could prove useful as a cheap, wearable alternative to kidney dialysis. The newly-fabricated nanofiber mesh for the removal of toxins from the blood, made by WPI-MANA researchers, may be incorporated into wearable blood purification systems for kidney failure patients.

Kidney failure results in a build up of toxins and excess waste in the body. Dialysis is the most common treatment, performed daily either at home or in hospital. However, require electricity and careful maintenance, and are therefore more readily available in developed countries than poorer nations. Around one million people die each year worldwide from potentially preventable end-stage renal disease.

In addition to this, in the aftermath of disasters such as the Japanese earthquake and tsunami of 2011, are frequently left without treatment until normal hospital services are resumed. With this in mind, Mitsuhiro Ebara and co-workers at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science in Ibaraki, Japan, have developed a way of removing toxins and waste from blood using a cheap, easy-to-produce nanofiber mesh(1).

The mesh could be incorporated into a blood purification product small enough to be worn on a patient's arm, reducing the need for expensive, time-consuming .

The team made their nanofiber mesh using two components: a blood-compatible primary matrix polymer made from polyethylene-co-vinyl alchohol, or EVOH, and several different forms of zeolites - naturally occurring aluminosilicates. Zeolites have microporous structures capable of adsorbing toxins such as creatinine from blood.

The researchers generated the mesh using a versatile and cost-effective process called electrospinning – using an electrical charge to draw fibers from a liquid. Ebara and his team found that the silicon-aluminum ratio within the zeolites is critical to creatinine adsorption. Beta type 940-HOA zeolite had the highest capacity for toxin adsorption, and shows potential for a final blood purification product.

Although the new design is still in its early stages and not yet ready for production, Ebara and his team are confident that a product based on their nanofiber mesh will soon be a feasible, compact and cheap alternative to dialysis for patients across the world.

Explore further: New evidence of the benefits of home dialysis for kidney patients

More information: K. Namekawa, M.T. Schreiber, T. Aoyagi, & M. Ebara. "Fabrication of zeolite-polymer composite nanofibers for removal of uremic toxins from kidney failure patients." Biomaterials Science (2014). DOI: 10.1039/c3bm60263j

Related Stories

A new generation of dialysis devices

March 3, 2014

Kidney dialysis is a heavy treatment to undergo and has many side effects. Scientist Prof Dimitrios Stamatialis is starting a new research project into the development of new dialysis membranes for longer and better blood ...

Recommended for you

Monkeys in Asia harbor virus from humans, other species

November 19, 2015

When it comes to spreading viruses, bats are thought to be among the worst. Now a new study of nearly 900 nonhuman primates in Bangladesh and Cambodia shows that macaques harbor more diverse astroviruses, which can cause ...

One-step test for hepatitis C virus infection developed

November 14, 2015

UC Irvine Health researchers have developed a cost-effective one-step test that screens, detects and confirms hepatitis C virus (HCV) infections. Dr. Ke-Qin Hu, director of hepatology services, will present findings at the ...

Computer model reveals deadly route of Ebola outbreak

November 10, 2015

Using a novel statistical model, a research team led by Columbia University's Mailman School of Public Health mapped the spread of the 2014-2015 Ebola outbreak in Sierra Leone, providing the most detailed picture to date ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.