Could sticky cells cause drug resistance in chronic blood cancer?

Could sticky cells cause drug resistance in chronic blood cancer?

(Medical Xpress)—Chronic myeloid leukaemia (CML) is associated with a specific genetic mutation that results from DNA on different chromosomes breaking off and swapping places. This disrupts genes at the breakpoint and the rejoining point. One of these disrupted genes is called BCR-ABL and drugs that target this mutation have transformed the treatment of CML. However, patients can develop resistance to these drugs, which causes their cancer to return.

Now scientists from The University of Manchester – part of the Manchester Cancer Research Centre - have measured the levels of the BCR-ABL genetic mutation in a cell model of CML. In particular, they separated into those that stuck to plastic – "sticky", or adherent, cells – and those non-adherent ones that did not, and looked for differences between the two groups of cells.

Dr Richard Byers, who jointly led the research, said: "Previous studies have linked high levels of the BCR-ABL mutation with drug resistance. We wanted to see how expression of BCR-ABL differed across groups of CML cells, and in particular whether there were differences between adherent and non-adherent populations."

In a study recently published in the journal Experimental Haematology, the group demonstrate that is wide variation in BCR-ABL expression levels in the cell model and the stickier cells have a higher level of BCR-ABL expression. These stickier cells were less sensitive to treatment with a BCR-ABL targeted drug, imatinib.

Dr Byers said: "The small number of cells that show high levels of BCR-ABL may not be detectable through bulk analysis of large samples. 

"It looks like it is important to look at protein levels in single cells. In future, it may be possible to measure BCR-ABL levels in in the clinic – this will help us identify the resistant high BCR-ABL cells and better understand how patients develop resistance to imatinib treatment with the aim of combatting this to make response more durable and the more effective."

More information: Ehsan Ghayoor Karimiani, Fiona Marriage, Anita J. Merritt, John Burthem, Richard John Byers, Philip J.R. Day, "Single-cell analysis of K562 cells: An imatinib-resistant subpopulation is adherent and has upregulated expression of BCR-ABL mRNA and protein," Experimental Hematology, Available online 20 November 2013, ISSN 0301-472X,

Related Stories

Can cancer drugs combine forces?

date Aug 16, 2007

Individuals with chronic myeloid leukemia (CML) are treated first with a drug known as imatinib (Gleevec), which targets the protein known to cause the cancer (BCR-ABL). If their disease returns, because BCR-ABL mutants emerge ...

Anchoring ABL for a better fate

date Aug 27, 2013

Chronic Myelogenous Leukemia (CML) is a cancer of the white blood cells that is most commonly found in adults and in the elderly. Its incidence has been estimated to be 1 to 2 in 100,000 people. CML was the first cancer to ...

Recommended for you

Spicy treatment the answer to aggressive cancer?

date 11 hours ago

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

date Jul 02, 2015

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

date Jul 02, 2015

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.