New technique opens the door to development of osteoperosis drugs

March 5, 2014

Scientists from the University of Granada (UGR) have opened the door to the development of new drugs against osteoporosis, one of the most common chronic illnesses in the world, especially among women 65 or over.

The researchers, from the University of Granada's Department of Physio-Chemistry, have patented a new methodology that allows specialists to measure – none-invasively and in real time – the concentration of phosphate ions inside living cells. The scientific importance of measuring phosphate ions is based precisely on the fact that it can be applied in evaluating the bio-availability of drugs used in certain illnesses, among which is osteoporosis.

Currently, there are only invasive treatments to calculate phosphate concentration within osteoblasts, which are the precursors to bone cells. To do this, radioactive phosphorus is used, which has serious drawbacks. The methodology developed by the University of Granada researchers has managed something unachievable until now.

Fluorescence Microscopy

The methodology is based on using a substance that gives out fluorescence, generated via prior agitation using a pulse laser. The time the fluorescence lasts is a signal of the phosphate concentration within the cellular cytoplasm. To measure this time period, a special fluorescence microscope is needed. The University of Granada's Faculty of Pharmacy has this equipment. It is very expensive to use and is the only such instrumentation in Andalusia.

Following this important scientific breakthrough, patented via the University of Granada's Research Results Transference Office (OTRI), the researchers are looking for pharmaceutical companies that are currently working on the development of drugs to measure the bio-availability of phosphate.

The main author of this scientific breakthrough, University of Granada professor, Jose Maria Alvarez Pez, points out that "our methodology is the only one that uses a technique that, in real time and none-invasively, allows the detection of phosphate ions inside living cells. We believe that this technique will help to develop to combat illnesses such as ."

Explore further: Circulating tumor cells in blood can predict a patient's response to chemotherapy

More information: "Real-Time Phosphate Sensing in Living Cells using Fluorescence Lifetime Imaging Microscopy (FLIM)." Jose M. Paredes, Maria D. Giron, Maria J. Ruedas-Rama, Angel Orte, Luis Crovetto, Eva M. Talavera, Rafael Salto, and Jose M. Alvarez-Pez. Journal of Physical Chemistry B 2013, 117, 8143−8149.

Related Stories

Imaging dynamics of small biomolecules inside live cells

March 2, 2014

Researchers at Columbia University have made a significant step toward visualizing small biomolecules inside living biological systems with minimum disturbance, a longstanding goal in the scientific community. In a study ...

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.