Transplanted human umbilical cord blood cells improved heart function in rat model of MI

When human umbilical cord blood cells were transplanted into rats that had undergone a simulated myocardial infarction (MI), researchers investigating the long term effects of the transplantation found that left ventricular (LV) heart function in the treated rats was improved over those that did not get the stem cells. The animals were maintained without immunosuppressive therapy.

The study will be published in a future issue of Cell Transplantation but is currently freely available on-line as an unedited early e-pub.

"Myocardial infarction induced by coronary artery disease is one of the major causes of attack," said study co-author Dr. Jianyi Zhang of the University of Minnesota Health Science Center. "Because of the loss of viable myocardium after an MI, the heart works under elevated wall stress, which results in progressive myocardial hypertrophy and left ventricular dilation that leads to heart failure. We investigated the long term effects of using human non-hematopoietic (nh-UCBCs). These cells have previously exhibited neuro-restorative effects in a rodent model of ischemic brain injury in terms of improved LV function and myocardial fiber structure, the three-dimensional architecture of which make the heart an efficient pump."

According to the authors, stem cell therapy for myocardial repair has been investigated extensively for the last decade, with researchers using a variety of different animal models, delivery modes, cells types and doses, all with varying levels of LV functional response. They also note that the underlying mechanisms for improvement are "poorly understood," and that the overall regeneration of muscle cells is "low."

To investigate the heart's remodeling processes and to characterize alterations in the cardiac fiber architecture, the research team used diffusion tensor MRI (DTMRI), used previously to study myofiber structure in both humans and animals.

While most previous studies have been focused on the short term effects of UCBCs, their study on long term effects not only demonstrated evidence of significantly improved heart function in the treated rats, but also showed evidence of delay and prevention in terms of myocardial fiber structural remodeling, alterations that could have resulted in .

When compared to the age-matched but untreated rat hearts with MI, the regional myocardial function of nh-UCBC-treated hearts was significantly improved and the preserved myocardial fiber structure may have served as an "underlying mechanism for the observed function improvements."

"Our data demonstrate that nh-UCBC treatment preserves myocardial fiber structure that supports the improved LV regional and chamber function," concluded the researchers.

"This study provides evidence that UCBCs could be a potential therapy with long term benefits for MI" said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation. "Preservation of the myocardial fiber structure is an important step towards finding an effective therapy for MIs"

More information: Chen, Y.; Ye, L.; Zhong, J.; Li, X.; Yan, C.; Chandler, M. P.; Calvin, S.; Xiao, F.; Negia, M.; Low, W. C.; Zhang, J.; Yu, X. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation . Cell Transplant. Appeared or available online: December 10, 2013. http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-ct0860Chen.

Related Stories

Recommended for you

How proteins evolved the capacity for movement within cells

date 4 hours ago

The process behind how the molecular components of living organisms start to move has been explained for the first time in new research published by Science and it is an intricate set of dance steps where the tempo is set ...

How do neural cells respond to ischemia?

date 5 hours ago

A group of researchers from the Lomonosov Moscow State University, in collaboration with their Irish colleagues from the University College Cork, has studied the early response of cells to ischemia, which ...

Shedding light on rods

date May 05, 2015

By using "unusual" optic fibres in a novel fashion, an international team of researchers led by the International School for Advanced Studies (SISSA) in Trieste, scrutinized the response to light of rods, ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.