Cancer and the Goldilocks effect: Too much or too little of a single enzyme may promote cancer

Researchers at the University of California, San Diego School of Medicine have found that too little or too much of an enzyme called SRPK1 promotes cancer by disrupting a regulatory event critical for many fundamental cellular processes, including proliferation.

The findings are published in the current online issue of Molecular Cell.

The family of SRPK kinases was first discovered by Xiang-Dong Fu, PhD, professor in the Department of Cellular and Molecular Medicine at UC San Diego in 1994. In 2012, Fu and colleagues uncovered that SPRK1 was a key signal transducer devoted to regulating alternative pre-mRNA splicing, a process that allows a single gene to produce multiple mRNA isoforms, which in many cases encode functionally distinct proteins. In this pathway, SRPK1 was a downstream target of Akt, also known as protein kinase B. Akt- activated SRPK1 moves to the nucleus to induce its targeted splicing factors.

In their latest paper, Fu and colleagues report that SRPK1 was found to act as a because when ablated or removed from mouse embryonic fibroblasts, unwanted cell transformation occurred. Unexpectedly, when SRPK1 was overexpressed in mouse cells, tumor development also happened.

"To my knowledge, this is the first time it has been shown that a signal kinase behaves as a tumor suppressor or a promoter, depending upon its abundance in the same cell" said Fu. "The point is that too much or too little are both bad."

Such contrary phenomena are due to a surprising role of SRPK1 in regulating the activity of Akt via a specific Akt phosphatase discovered earlier by Alexandra C. Newton, PhD, professor of pharmacology at UC San Diego. The Akt phosphatase cannot find Akt when there is too little SRPK1 to assist, and the phosphatase is tied up when there is too much SRPK1. In both cases, the result is a dampening of Akt inactivation.

As Akt plays a key role in many , such as glucose metabolism, apoptosis, proliferation and all key aspects of , the elucidated mechanism provides a critical insight into tumorigenesis in humans. Indeed, compared to normal cells, many tumors show SRPK1 overexpression while others display reduced expression.

The findings may have future therapeutic implications, but Fu said the challenges remain daunting. "Most tumors show SRPK1 overexpression, so it may be possible to treat certain cancers with a specific SRPK1 inhibitor. This has been already demonstrated by others. But suppressing a not related to SRPK1 overexpression could actually stimulate that cancer."

add to favorites email to friend print save as pdf

Related Stories

Enzyme offers new therapeutic target for cancer drugs

Jun 21, 2012

Researchers at the University of California, San Diego School of Medicine have uncovered a new signal transduction pathway specifically devoted to the regulation of alternative RNA splicing, a process that allows a single ...

Researchers find more clues to causes of breast cancer

Oct 27, 2011

Publishing in the current issue of The Journal of Biological Chemistry (Vol. 286, No 43), researchers at Moffitt Cancer Center in Tampa, Fla., have discovered additional mechanisms of "Akt" activation and suggest a component ...

Researchers discover variants of natural tumor suppressor

Apr 09, 2007

Building on their 2005 discovery of an enzyme that is a natural tumor suppressor, researchers at the University of California, San Diego School of Medicine have now identified two variants of that enzyme which could provide ...

An Achilles heel in cancer cells

Dec 08, 2008

A protein that shields tumor cells from cell death and exerts resistance to chemotherapy has an Achilles heel, a vulnerability that can be exploited to target and kill the very tumor cells it usually protects, researchers ...

Recommended for you

Generation of tanners see spike in deadly melanoma

11 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

11 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

23 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments