Eliciting brain plasticity to keep the body moving

April 1, 2014 by Miles O'brien
Eliciting brain plasticity to keep the body moving
Biomedical engineer Bin He and his team at the University of Minnesota have created a brain-computer interface with the goal of helping people with disabilities, such as paralysis, regain the ability to do everyday tasks. The researchers are testing out their system using a flying object, known as a quadcopter, and controlling it with someone's thoughts! For the experiments, the team uses both an actual flying quadcopter and a virtual one. In both experiments, the interface is non-invasive so there are no implants. Participants wear an electro-encephalography, or EEG, cap with 64 electrodes. When the participant thinks about a specific movement, neurons in his or her brain's motor cortex produce tiny electric signals, which are sent to a computer. The computer processes the signals and sends directions through a Wi-Fi system to direct the quadcopter. Credit: Science Nation, National Science Foundation

With support from the National Science Foundation's (NSF) Emerging Frontiers of Research and Innovation (EFRI) program, bioengineer Gert Cauwenberghs, of the Jacobs School of Engineering and the Institute for Neural Computation at the University of California (UC), San Diego, and his colleagues are working to understand how brain circuitry controls how we move. The goal is to develop new technologies to help patients with Parkinson's disease and other debilitating medical conditions navigate the world on their own.

"Parkinson's disease is not just about one location in the brain that's impaired. It's the whole body. We look at the problems in a very holistic way, combine science and clinical aspects with engineering approaches for technology," explains Cauwenberghs. "We're using advanced technology, but in a means that is more proactive in helping the brain to get around some of its problems—in this case, Parkinson's disease—by working with the brain's natural plasticity, in wiring connections between neurons in different ways."

The video will load shortly

Outcomes of this research are contributing to the system-level understanding of human-machine interactions, and motor learning and control in real world environments for humans, and are leading to the development of a new generation of wireless brain and body activity sensors and adaptive prosthetics devices. Besides advancing our knowledge of human-machine interactions and stimulating the engineering of new brain/body sensors and actuators, the work is directly influencing diverse areas in which humans are coupled with machines. These include -machine interfaces and telemanipulation.

Explore further: BRAIN initiative seeks tools to understand human thought, behavior, consciousness

Related Stories

Exploring the brain for keys to solving Parkinson's disease

March 26, 2014

One of the final frontiers of science is the human brain. The brain is the source of our intelligence, feelings and ability to make our bodies move – as well as the locus of terrible diseases such as Parkinson's and Alzheimer's ...

Recommended for you

The brain's super-sensitivity to curbs

July 27, 2016

Humans rely on boundaries like walls and curbs for navigation, and Johns Hopkins University researchers have pinpointed the areas of the brain most sensitive to even the tiniest borders.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.