Factor present in gestational and type 2 diabetes could provide new treatment options

April 1, 2014
Blood glucose monitoring. Credit: Wikipedia

New research reveals that both pregnant women with diabetes and with type 2 diabetics have high levels of a fat metabolite that impairs pancreatic cells from secreting insulin. The findings, which are published in the April 1 issue of the Cell Press journal Cell Metabolism, suggest that blocking the effects of this fat metabolite may help prevent and treat diabetes.

In nearly one-fifth of pregnancies, can arise (called ), and when this happens, it puts the woman at an increased risk for developing later in life. To gain better insights into the shared mechanisms behind these two types of diabetes, researchers in Dr. Michael Wheeler's lab at the University of Toronto examined more than 340 molecules in blood samples from individuals with gestational diabetes, individuals with type 2 diabetes, and individuals without diabetes. The researchers used a metabolomics approach, which involves the study of chemical processes involving metabolites.

The team found that the blood of both gestational and type 2 diabetic patients contained a remarkable number of changed metabolites, including sugars, amino acids, and fats, compared with samples from nondiabetic controls. One particular fat metabolite, called CMPF, was dramatically increased in both gestational and type 2 diabetic individuals compared to those without diabetes. Experiments in mice showed that this increased concentration of CMPF caused a decrease in insulin secretion from beta cells in the pancreas, which led to the development of diabetes.

More detailed mechanistic experiments revealed that CMPF enters a beta cell through what's called organic anion transporter 3 (OAT3), and once inside the cell it causes oxidative stress and other negative effects. Next, the researchers found that the effects of CMPF could be prevented through either blocking the transport of CMPF into insulin-producing beta cells or treatment with antioxidants.

"Based on our findings we believe that CMPF and its transporter OAT3 represent novel targets for prevention and treatment of diabetes," says first author Kacey Prentice. "If we can reduce levels of CMPF in the blood, or prevent CMPF from entering the beta cell through blockage of OAT3, we believe that we can preserve beta cell function and prevent the beta cell failure that ultimately causes diabetes."

According to Prentice, it is important to note that the treatment of gestational diabetes is a very sensitive topic due to potential risks to both the mother and the developing fetus. "Due to this, we believe the prevention and treatment of type 2 diabetes is a more realistic and widely acceptable goal; however, CMPF has great potential for use as a biomarker of both conditions."

Explore further: The role of beta cell regeneration in type 2 diabetes

More information: Prentice et al.: "CMPF is Elevated in Diabetes and Induces Beta Cell Dysfunction." Cell Metabolism, dx.doi.org/10.1016/j.cmet.2014.03.008

Related Stories

The role of beta cell regeneration in type 2 diabetes

October 10, 2012

The World Health Organization (WHO) has declared type 2 diabetes as the epidemic of the 21st century. A study is focusing on understanding the mechanisms underlying insulin resistance and the role of beta-cell regeneration.

Loss of function of a single gene linked to diabetes in mice

January 4, 2014

Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were ...

Researchers find new pathway connected to type 2 diabetes

March 19, 2014

Scientists at the Children's Hospital of Eastern Ontario (CHEO) Research Institute have discovered a cellular pathway that is responsible for keeping blood sugar levels low in obese or pre-diabetic people, and may prevent ...

Diabetes researchers track cells' ability to regenerate

March 19, 2014

Vanderbilt University scientists have found evidence that the insulin-secreting beta cells of the pancreas, which are either killed or become dysfunctional in the two main forms of diabetes, have the capacity to regenerate.

Recommended for you

Major fall in diabetes-related amputations since the 1990s

November 22, 2015

A major new study has found a significant reduction in diabetes-related amputations since the mid-1990s, credited to improvements in diabetes care over this period. The research is published in Diabetologia (the journal of ...

Blocking immune cell treats new type of age-related diabetes

November 18, 2015

Diabetes is often the result of obesity and poor diet choices, but for some older adults the disease might simply be a consequence of aging. New research has discovered that diabetes—or insulin resistance—in aged, lean ...

Bacteria may cause type 2 diabetes

June 1, 2015

Bacteria and viruses have an obvious role in causing infectious diseases, but microbes have also been identified as the surprising cause of other illnesses, including cervical cancer (Human papilloma virus) and stomach ulcers ...

Engineered hot fat implants reduce weight gain in mice

August 20, 2015

Scientists at the University of California, Berkeley, have developed a novel way to engineer the growth and expansion of energy-burning "good" fat, and then found that this fat helped reduce weight gain and lower blood glucose ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.