Function found for mysterious heart disease gene

April 25, 2014
A genetic variant of the gene SPG7 is associated with increased risk of heart disease. University of Ottawa Heart Institute researchers have shown that this variant increases cardiovascular risk by initiating oxidative stress in mitochondria (shown in red) that leads to chronic inflammation and long-term damage of blood vessels. The mitochondria in an unstressed cell would show primarily as green. Credit: University of Ottawa Heart Institute

A new study from researchers at the University of Ottawa Heart Institute (UOHI), published today in Cell Reports, sheds light on a mysterious gene that likely influences cardiovascular health. After five years, UOHI researchers now know how one genetic variant works and suspect that it contributes to the development of heart disease through processes that promote chronic inflammation and cell division.

Researchers at the Ruddy Canadian Cardiovascular Genetics Centre had initially identified a variant in a gene called SPG7 as a potential contributor to several years ago, but its role in multiple health processes made it difficult to tease out how it affects .

The gene holds instructions for producing a protein called SPG7. This protein resides in mitochondria—the small power plants of cells that produce the energy cells need to function. SPG7's role is to help break down and recycle other damaged proteins within the mitochondria.

Normally, SPG7 requires a partner protein to activate itself and start this breakdown process. But, in people who carry the genetic variant in question, SPG7 can activate itself in certain circumstances, leading to increased production of free radicals and more rapid . These factors contribute to inflammation and atherosclerosis.

"We think this variant would definitely heighten the state of inflammation, and we know that inflammation affects diabetes and heart disease," said Dr. Stewart, Principal Investigator in the Ruddy Canadian Cardiovascular Genetics Centre and senior author of the study. "Interestingly, the variant also makes people more resistant to the toxic side effects of some chemotherapy drugs."

From an evolutionary perspective, this resistance could help such a genetic variant gain a stable place in the human genome. Between 13 and 15 per cent of people of European descent possess this variant.

"The idea of mitochondria contributing to isn't new," concluded Dr. Stewart. "But what is new is that we've found one of the switches that regulate this process. We're excited, because once you know where the switches are, you can start looking for ways to turn them on and off."

Explore further: Genetic variation linked to heart disease risk through RNA machinery

Related Stories

Genetics that protects your heart

December 23, 2013

(Medical Xpress)—Researchers have found a key piece of the puzzle as to why an isolated population in Greece may live healthy lives. They have found that a genetic variant known to protect the heart is 40 times more common ...

Recommended for you

Scientists edit gene mutations in inherited form of anemia

October 26, 2016

A Yale-led research team used a new gene editing strategy to correct mutations that cause thalassemia, a form of anemia. Their gene editing technique provided corrections to the mutations and alleviated the disease in mice, ...

Maternal blood test may predict birth complications

October 24, 2016

A protein found in the blood of pregnant women could be used to develop tests to determine the health of their babies and aid decisions on early elective deliveries, according to an early study led by Queen Mary University ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.