Genetic defect may confer resistance to certain viral infections

Viruses (blue and pink) must use host cells (green) to create more viruses that spread infection (top panel). CDG-IIb patients have defective glycosylation, the process of adding sugars to proteins, resulting in poor production of viruses that depend on this process, such as HIV and influenza (bottom panel). The scientists also show that viruses coming from the patients' cells (orange) are less infectious because of changes to their outer shields. Credit: NIAID

A National Institutes of Health (NIH) study reports that a rare genetic disease, while depleting patients of infection-fighting antibodies, may actually protect them from certain severe or recurrent viral infections. Researchers found that HIV and influenza viruses replicate in the cells of people with congenital disorder of glycosylation type IIb (CDG-IIb) at a much lower rate than in healthy donor cells, creating fewer and less infectious viruses. The study, published in The New England Journal of Medicine, was led by Sergio Rosenzweig, M.D., Ph.D., director of the Primary Immune Deficiency (PID) Clinic at the NIH's National Institute of Allergy and Infectious Diseases (NIAID).

In the study, the researchers diagnosed CDG-IIb in two siblings with severe development issues who were referred to the NIAID PID Clinic though the NIH Undiagnosed Diseases Program. CDG-IIb is extremely rare, with only one other case reported. The genetic defect of the disease disrupts glycosylation, or the process of attaching sugars to proteins. As a result, proteins called gamma globulins, which include infection-fighting antibodies, are unstable and persist at low levels in the patients' blood.

Interestingly, some viruses, including HIV and influenza, depend on glycosylation to form protective shields. The researchers showed that these were less able to replicate or create protective shields because of the glycosylation defects in CDG-IIb cells. In comparison, adenovirus, poliovirus and vaccinia virus, which either do not rely on glycosylation or do not form protective shields, replicated normally when added to both CDG-IIb and healthy cells. This study suggests that modulating aspects of host glycosylation may be a strategy to control certain .

More information: MA Sadat, S Moir et al. Glycosylation, hypogammaglobulinemia and resistance to viral infections. NEJM, DOI: 10.1056/NEJMoa1302846 (2014).

add to favorites email to friend print save as pdf

Related Stories

Research team identifies new genetic syndrome

Mar 04, 2014

Researchers at the National Institutes of Health (NIH) have identified a new genetic syndrome characterized by a constellation of health problems, including severe allergy, immune deficiency, autoimmunity and motor and neurocognitive ...

Trick that aids viral infection is identified

Jan 30, 2014

Scientists have identified a way some viruses protect themselves from the immune system's efforts to stop infections, a finding that may make new approaches to treating viral infections possible.

Recommended for you

Growing a blood vessel in a week

6 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

9 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments