Genetic predisposition to liking amphetamine reduces risk of schizophrenia and ADHD

Children with ADHD find it more difficult to focus and to complete their schoolwork. Credit: public domain image

Genetic variants associated with enjoying the effects of d-amphetamine—the active ingredient in Adderall—are also associated with a reduced risk for developing schizophrenia and attention deficit hyperactivity disorder (ADHD), report scientists from the University of Chicago in the Proceedings of the National Academy of Sciences on April 7. The results support a long-standing hypothesis that dopamine, the neurotransmitter connected with the euphoric effects of amphetamine, is related to schizophrenia and ADHD.

"Some of the variants that make you like also appear to make you less likely to develop and ADHD," said study leader Abraham Palmer, PhD, associate professor of human genetics at the University of Chicago. "Our study provides new insights into the biology of amphetamine and how it relates to the biology of risk for these psychiatric diseases."

Palmer and his team previously conducted a genome-wide association study (GWAS) to identify genetic variants associated with experiencing the euphoric effects of amphetamine, which is thought to affect risk for drug abuse. Almost 400 volunteers were given d-amphetamine in a double-blind, placebo-controlled experiment. They were then asked to report how the drug made them feel using carefully designed questionnaires. The researchers measured genetic differences between these subjects at approximately a million sites throughout the genome to identify variations in the DNA code known as single nucleotide polymorphisms, or SNPs. They assessed the relationships between each of these SNPs and sensitivity to amphetamine.

Using data from other large-scale GWAS studies, the team examined these same SNPs for possible overlapping associations with psychiatric disorders. Through rigorous statistical testing they found that an unexpectedly large number of SNPs were associated with both sensitivity to amphetamine and risk of developing schizophrenia or ADHD. This suggested that these traits are influenced by a common set of genetic variants.

Moreover, a significant proportion of this observed overlap appeared to be caused by variants that increased enjoyment of the effects of amphetamine but decreased the risk for both psychiatric diseases.

The researchers performed similar analyses for traits that were not expected to be related to amphetamine sensitivity, such as height, irritable bowel disease and Parkinson's disease. In all of these cases they observed no more overlapping SNPs than would have been expected by chance alone.

"While this approach would not be a useful diagnostic test, we expect that people who like the effects of amphetamine would be slightly less likely to develop schizophrenia and ADHD," Palmer said. "And people who did not like amphetamine, we would predict, are slightly more likely to develop these diseases."

"What is particularly striking is that by examining people's responses for just a few hours after taking a drug, we can identify an underlying genetic propensity that can manifest as a psychiatric disease over the course of a lifetime," he adds.

These results provide unique genetic evidence for the role of dopamine in schizophrenia and ADHD. Schizophrenia is commonly treated using drugs that block dopamine signaling, while ADHD is treated using drugs, including d-amphetamine itself, that enhance dopamine signaling. Despite opposite treatments, amphetamine-liking SNPs reduced the risk for developing both diseases, suggesting that dopamine's role is more complex than hypothesized.

The study also offers a new direction for the analysis of a wide range of similar genetic studies, particularly ones with smaller sample sizes. By analyzing the results of those studies for overlap with data from much larger genetic studies, promising genetic variants that would otherwise never stand out among the noise of hundreds of thousands of other random variants can be identified.

"Our approach offers a promising new direction for studying complex psychiatric behaviors using the whole-genome approach," said co-author Harriet de Wit, PhD, professor of psychiatry and behavioral neuroscience at the University of Chicago.

The team plans to further study the SNPs identified in this study for their functional roles in amphetamine liking, schizophrenia and ADHD. In addition, Palmer hopes to explore genetic predispositions toward liking or disliking other therapeutic drugs and whether sensitivity to those drugs might also overlap with the diseases for which these drugs are used.

"When we use a drug treatment, we know exactly what systems have been perturbed," Palmer said. "So when we see overlap for alleles that affect how you respond to drugs and a disease, we can hone in on what those alleles are doing biologically. This is instrumental for translating those results into new treatments and cures, which is the ultimate reason for performing of disease."

More information: Genetic variation associated with euphorigenic effects of d-amphetamine is associated with diminished risk for schizophrenia and attention deficit hyperactivity disorder, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1318810111

add to favorites email to friend print save as pdf

Related Stories

ADHD drug effective for people with dependency

Oct 14, 2013

People with ADHD and substance dependence rarely respond as they should to ADHD medication. A randomised study from Karolinska Institutet now shows that it is possible to obtain the desired efficacy by administering the drug ...

Improving the search for new schizophrenia treatments

Apr 05, 2013

(Medical Xpress)—Controlling the symptoms of schizophrenia is the job of antipsychotic drugs which block a set of specific neural signals. But the way these drugs work can lead to a host of severe and debilitating ...

Protein on 'speed' linked to ADHD

Jul 08, 2008

A genetic change in the dopamine transporter – one of the brain's dopamine-handling proteins – makes it behave as if amphetamine is present and "run backward," Vanderbilt University Medical Center investigators report ...

New ADHD findings

Nov 14, 2011

A combination of rare and common genetic variations could play a part in biological pathways linked to Attention Deficit Hyperactivity Disorder (ADHD).

Recommended for you

Study identifies genetic change in autism-related gene

13 hours ago

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

Cancer leaves a common fingerprint on DNA

Aug 25, 2014

Regardless of their stage or type, cancers appear to share a telltale signature of widespread changes to the so-called epigenome, according to a team of researchers. In a study published online in Genome Me ...

User comments