Researchers trace HIV evolution in North America (Update)

Zabrina Brumme's health sciences lab. Members of Zabrina Brumme's health sciences lab. (l-r) Laura Cotton, Zabrina Brumme, Anh Q. Le, Xiaomei (Tallie) Kuang

A study tracing the evolution of HIV in North America involving researchers at Simon Fraser University has found evidence that the virus is slowly adapting over time to its human hosts. However, this change is so gradual that it is unlikely to have an impact on vaccine design.

"Much research has focused on how HIV adapts to antiviral drugs—we wanted to investigate how HIV adapts to us, its human hosts, over time," says lead author Zabrina Brumme, an assistant professor in SFU's Faculty of Health Sciences.

The study, published today in PLOS Genetics, was led by Brumme's lab in collaboration with scientists at the BC Centre for Excellence in HIV/AIDS, UBC, and sites across the U.S. including Harvard University, the New York Blood Center and the San Francisco Department of Public Health.

"HIV adapts to the immune response in reproducible ways. In theory, this could be bad news for host immunity—and vaccines—if such mutations were to spread in the population," says Brumme. "Just like transmitted drug resistance can compromise treatment success, transmitted immune escape mutations could erode our ability to naturally fight HIV."

Researchers characterized HIV sequences from patients dating from 1979, the beginning of the North American HIV epidemic, to the modern day.

The team reconstructed the epidemic's ancestral HIV sequence and from there, assessed the spread of immune escape mutations in the population.

"Overall, our results show that the virus is adapting very slowly in North America," says Brumme. "In parts of the world harder hit by HIV though, rates of adaptation could be higher."

The study ends with a message of hope, Brumme adds. "We already have the tools to curb HIV in the form of treatment—and we continue to advance towards a vaccine and a cure. Together, we can stop HIV/AIDS before the virus subverts host immunity through population-level adaptation."

Numerous SFU researchers contributed to the analysis, which required the careful recovery of viral RNA from historic specimens followed by laboratory culture. A trio of SFU graduate students, including health sciences student Laura Cotton, shared the lead author role.

"It was painstaking work," says Cotton, "but it was fascinating to study these isolates in the lab, knowing that they had played an important role in the history of HIV on our continent."

More information: Cotton LA, Kuang XT, Le AQ, Carlson JM, Chan B, et al. (2014) Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic. PLoS Genet 10(4): e1004295. DOI: 10.1371/journal.pgen.1004295

add to favorites email to friend print save as pdf

Related Stories

HIV vaccine research must consider various immune responses

Apr 03, 2014

Last year, the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, held a scientific meeting to examine why certain investigational HIV vaccines may have increased susceptibility ...

Transplant drugs may help wipe out persistent HIV infections

Apr 03, 2014

New research suggests that drugs commonly used to prevent organ rejection after transplantation may also be helpful for combating HIV. The findings, which are published in the American Journal of Transplantation, suggest a new ...

Recommended for you

Condoms 'too small' for Uganda men

Sep 19, 2014

Ugandan MPs have been inundated with complaints that many condoms on sale in the east African nation are too small, warning the problem is a blow to the fight against AIDS.

Withdrawal from the evolutionary race

Sep 18, 2014

In some HIV sufferers, the immune system does not fight off the immune deficiency virus. Instead, the body tolerates the pathogen. A research team headed by ETH Zurich has now determined how strongly patients ...

The genetics of coping with HIV

Sep 16, 2014

We respond to infections in two fundamental ways. One, which has been the subject of intensive research over the years, is "resistance," where the body attacks the invading pathogen and reduces its numbers. Another, which ...

User comments