Mouse model would have predicted toxicity of drug that killed five in 1993 clinical trial

April 15, 2014

Over 20 years after the fatal fialuridine trial, a study published this week in PLOS Medicine demonstrates that mice with humanized livers recapitulate the drug's toxicity. The work suggests that this mouse model should be added to the repertoire of tools used in preclinical screening of drugs for liver toxicity before they are given to human participants in clinical trials.

A by the US National Academy of Sciences of all preclinical fialuridine toxicity tests, which included studies in mice, rats, dogs, and monkeys, concluded that the available animal data provided no indication that the drug would cause in humans. Working on a in which approximately 90% of the animal's cells are replaced by human liver cells, Jeffrey Glenn and Gary Peltz, from Stanford University, USA, and colleagues now show that it is possible to detect the toxicity of fialuridine, and possibly other drugs that poison human liver cells.

When the researchers treated mice with humanized livers with fialuridine, they found that the drug caused liver failure. The clinical symptoms (jaundice and lethargy), laboratory abnormalities (elevated transaminase and lactate levels), and anatomical changes to the liver in the drug-treated mice mirrored those observed in human participants in the fialuridine trial.

To test whether the mouse model could specifically identify the toxicity of fialuridine but would not raise "false alarm" on other drugs, the researchers treated the humanized liver mice with a second drug called sofosbuvir. Sofosbuvir belongs to the same class of drugs as fialuridine, but it has been tested in humans and was found not to have at doses within a few orders of magnitude of the effective dose. Sofosbuvir-treated mice did not show symptoms of liver failure.

Because the humanized mice used in these studies have an impaired immune system, they cannot be used to warn of toxicity that is mediated by the immune system. Nevertheless, since the liver is the "detox" organ, toxicity caused by drugs that act directly on the liver is a common problem in drug development. And because of important differences between human and animal livers, the researchers say "toxicology studies using mice with humanized livers could have a large impact on drug development and could improve the safety of drugs that will subsequently be tested in humans". They express hope that, as suggested by their findings, "the use of 21st century methodologies could improve the safety of 21st century drug development".

Explore further: Mice with human livers make pharmaceutical testing more accurate

More information: Xu D, Nishimura T, Nishimura S, Zhang H, Zheng M, et al. (2014) Fialuridine Induces Acute Liver Failure in Chimeric TK-NOG Mice: A Model for Detecting Hepatic Drug Toxicity Prior to Human Testing. PLoS Med 11(4): e1001628. DOI: 10.1371/journal.pmed.1001628

Related Stories

Mice with 'humanized' livers improve early drug testing

October 31, 2012

Stanford University School of Medicine scientists have used bioengineered mice with livers composed largely of human cells to characterize a drug about to enter early-stage clinical development for combating hepatitis C.

Obesity-induced fatty liver disease reversed in mice

January 29, 2014

Johns Hopkins researchers have discovered that valproic acid, a widely prescribed drug for treating epilepsy, has the additional benefits of reducing fat accumulation in the liver and lowering blood sugar levels in the blood ...

Mini-livers show promise to reduce animal use in science

February 26, 2014

Research that has for the first time successfully grown "mini-livers" from adult mouse stem cells has won the UK's international prize for the scientific and technological advance with the most potential to replace, reduce ...

Recommended for you

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.