Mutant protein in muscle linked to neuromuscular disorder

April 16, 2014
Mutant protein in muscle linked to neuromuscular disorder
This is a graphic of the SBMA mouse model. Credit: UC San Diego School of Medicine

Sometimes known as Kennedy's disease, spinal and bulbar muscular atrophy (SBMA) is a rare inherited neuromuscular disorder characterized by slowly progressive muscle weakness and atrophy. Researchers have long considered it to be essentially an affliction of primary motor neurons – the cells in the spinal cord and brainstem that control muscle movement.

But in a new study published in the April 16, 2014 online issue of Neuron, a team of scientists at the University of California, San Diego School of Medicine say novel mouse studies indicate that mutant protein levels in cells, not , are fundamentally involved in SBMA, suggesting an alternative and promising new avenue of treatment for a condition that is currently incurable.

SBMA is an X-linked recessive disease that affects only males, though females carrying the defective gene have a 50:50 chance of passing it along to a son. It belongs to a group of diseases, such as Huntington's disease, in which a C-A-G DNA sequence is repeated too many times, resulting in a protein with too many glutamines (an amino acid), causing the diseased protein to misfold and produce harmful consequences for affected cells. Thus far, human clinical trials of treatments to protect against these repeat toxicities have failed.

In the new paper, a team led by principal investigator Albert La Spada, MD, PhD, professor of pediatrics, cellular and molecular medicine, and neurosciences, and the associate director of the Institute for Genomic Medicine at UC San Diego, propose a different therapeutic target. After creating a new mouse model of SBMA, they discovered that skeletal muscle was the site of mutant protein toxicity and that measures which mitigated the protein's influence in muscle suppressed symptoms of SBMA in treated mice, such as weight loss and progressive weakness, and increased survival.

In a related paper, published in the April 16, 2014 online issue of Cell Reports, La Spada and colleagues describe a potential treatment for SBMA. Currently, there is none.

The scientists developed antisense oligonucleotides – sequences of synthesized genetic material – that suppressed androgen receptor (AR) gene expression in peripheral tissues, but not in the central nervous system. Mutations in the AR gene are the cause of SBMA, a discovery that La Spada made more than 20 years ago while a MD-PhD student.

La Spada said that antisense therapy helped mice modeling SBMA to recover lost muscle weight and strength and extended survival.

"The main points of these papers is that we have identified both a genetic cure and a drug cure for SBMA – at least in mice. The goal now is to further develop and refine these ideas so that we can ultimately test them in people," La Spada said.

Explore further: Mighty mice: Treatment targeted to muscle improves motor neuron disease

Related Stories

Mouse model confirms mutated protein's role in dementia

November 2, 2010

A team of scientists from Japan and the University of California, San Diego School of Medicine have created a new mouse model that confirms that mutations of a protein called beta-synuclein promote neurodegeneration. The ...

Neurological disorder impacts brain cells differently

November 9, 2011

In a paper published in the Nov. 9 issue of the Journal of Neuroscience, researchers at the University of California, San Diego School of Medicine and University of Washington describe in deeper detail the pathology of a ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.