Mutant protein in muscle linked to neuromuscular disorder

Mutant protein in muscle linked to neuromuscular disorder
This is a graphic of the SBMA mouse model. Credit: UC San Diego School of Medicine

Sometimes known as Kennedy's disease, spinal and bulbar muscular atrophy (SBMA) is a rare inherited neuromuscular disorder characterized by slowly progressive muscle weakness and atrophy. Researchers have long considered it to be essentially an affliction of primary motor neurons – the cells in the spinal cord and brainstem that control muscle movement.

But in a new study published in the April 16, 2014 online issue of Neuron, a team of scientists at the University of California, San Diego School of Medicine say novel mouse studies indicate that mutant protein levels in cells, not , are fundamentally involved in SBMA, suggesting an alternative and promising new avenue of treatment for a condition that is currently incurable.

SBMA is an X-linked recessive disease that affects only males, though females carrying the defective gene have a 50:50 chance of passing it along to a son. It belongs to a group of diseases, such as Huntington's disease, in which a C-A-G DNA sequence is repeated too many times, resulting in a protein with too many glutamines (an amino acid), causing the diseased protein to misfold and produce harmful consequences for affected cells. Thus far, human clinical trials of treatments to protect against these repeat toxicities have failed.

In the new paper, a team led by principal investigator Albert La Spada, MD, PhD, professor of pediatrics, cellular and molecular medicine, and neurosciences, and the associate director of the Institute for Genomic Medicine at UC San Diego, propose a different therapeutic target. After creating a new mouse model of SBMA, they discovered that skeletal muscle was the site of mutant protein toxicity and that measures which mitigated the protein's influence in muscle suppressed symptoms of SBMA in treated mice, such as weight loss and progressive weakness, and increased survival.

In a related paper, published in the April 16, 2014 online issue of Cell Reports, La Spada and colleagues describe a potential treatment for SBMA. Currently, there is none.

The scientists developed antisense oligonucleotides – sequences of synthesized genetic material – that suppressed androgen receptor (AR) gene expression in peripheral tissues, but not in the central nervous system. Mutations in the AR gene are the cause of SBMA, a discovery that La Spada made more than 20 years ago while a MD-PhD student.

La Spada said that antisense therapy helped mice modeling SBMA to recover lost muscle weight and strength and extended survival.

"The main points of these papers is that we have identified both a genetic cure and a drug cure for SBMA – at least in mice. The goal now is to further develop and refine these ideas so that we can ultimately test them in people," La Spada said.

Related Stories

Neurological disorder impacts brain cells differently

date Nov 09, 2011

In a paper published in the Nov. 9 issue of the Journal of Neuroscience, researchers at the University of California, San Diego School of Medicine and University of Washington describe in deeper detail the pathology of a d ...

Mouse model confirms mutated protein's role in dementia

date Nov 02, 2010

A team of scientists from Japan and the University of California, San Diego School of Medicine have created a new mouse model that confirms that mutations of a protein called beta-synuclein promote neurodegeneration. The ...

Recommended for you

Why you need one vaccine for measles and many for the flu

date 19 hours ago

While the influenza virus mutates constantly and requires a yearly shot that offers a certain percentage of protection, old reliable measles needs only a two-dose vaccine during childhood for lifelong immunity. ...

Scientists turn blood into neural cells

date 19 hours ago

Scientists at McMaster University have discovered how to make adult sensory neurons from human patients simply by having them roll up their sleeve and providing a blood sample.

How our gut changes across the life course

date 22 hours ago

Scientists and clinicians on the Norwich Research Park have carried out the first detailed study of how our intestinal tract changes as we age, and how this determines our overall health.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.