Scientists emphasize metabolites' role in understanding disease

Overreliance on genetic-centered approaches in predicting, diagnosing and treating disease will lead to few future scientific breakthroughs, cautioned a University of Alabama researcher who co-authored an article in an early online issue of Genetics that advocates for a greater emphasis on the body's metabolites in understanding illnesses.

"To augment the value of genetic data, the scientific community needs to add additional information from things like metabolomics – the analysis of within an organism," said Dr. Laura Reed, a University of Alabama geneticist and the March 25 paper's lead author.

"The Human Genome Project has been sold as something that is going to revolutionize medicine – that soon we will get our genomes sequenced, and we will be able to figure out exactly what diseases we are at risk for and, maybe, the best way to treat them," said Reed. "While it's true there are important innovations to come from that kind of information, it is much more limited than some may have hoped."

Using as animal models in the research publishing in Genetics, the multi-institution team demonstrated how genetics, in combination with metabolomics and gene expression—how genes are turned on—can be used to predict and the organism's response to environmental change, said Reed.

The paper's additional co-authors include representatives from Georgia Tech, Sanford-Burnham Medical Research Institute, La Jolla, Calif.; North Carolina State University; Huck Institutes of the Life Sciences, University Park, Pa.; and Bayer CropScience, Monheim, Germany.

Metabolites are naturally occurring chemicals in the body. While a few, like cholesterol and blood glucose are routinely monitored for the insights they can provide into health conditions, additional metabolites merit closer inspection, the researchers said. Glycine, a metabolite which serves as both an essential amino acid and a neurotransmitter, has previously been shown as a predictor of heart disease and certain cancers.

"We identified another nine metabolites that are also good predictors that have not yet been previously described as associated with these traits," Reed said. "They are good candidates for exploring further. They may not be causal, but they may be correlated."

One day, Reed said, in addition to doctors measuring and cholesterol levels, perhaps they will routinely measure other metabolites as way of improving predictions of disease risks.

In one of the project's aspects, headed by UA, 187 metabolites were measured in flies to determine which ones' levels changed in correlation with weight changes in the flies.

As with mice and other widely accepted animal models used in studying human conditions, many of the biological systems within fruit flies share enough similarities with humans to potentially draw effective insight into human conditions, Reed said.

For example, flies can contract diabetes and, as they age, heart disease. Their insulin-signaling pathways, key in diabetes, share similarities with those of humans, as do their kidneys, liver and the adipose tissue – the types of tissue where fat is stored.

Hundreds of genetically identical flies, grouped by 20 distinct genetic lines, were tested across four different diets. In this way, the researchers are able to determine which aspect of their disease is because of their genes and which aspect is because of their environment or diet.

"One of the important things we found is that the effects of diet are relatively small for , but much more significant for all the metabolites."

In another aspect of the research, led by Georgia Tech, the scientists tracked how the frequency of genes in wild flies changed through time (over multiple generations) in response to diet. Rather than seeing changes in one particular gene or a small group of genes, the researchers saw changes across the entire genome.

"We can't expect to find a gene or just a few genes that explain any phenotype, including disease," Reed said. Disease is a holistic problem, she said, and it's unlikely that additional "miracle drugs" await discovery.

"It's going to be a holistic solution," Reed said.

Reed said she realizes the paper may not be warmly embraced by all her fellow geneticists.

"The overall point of the paper is not a very popular idea," Reed admitted, "because it basically means things are much more complicated than we want them to be. But, that's reality.

"This does not mean that we can't incrementally improve things by understanding the genes that are involved, but, perhaps, a more expedient approach would be analyzing higher level traits, like metabolites, that might summarize what's occurring in the genome in ways more useful for diagnostic or treatment purposes."

add to favorites email to friend print save as pdf

Related Stories

Lifestyle influences metabolism via DNA methylation

Sep 20, 2013

An unhealthy lifestyle leaves traces in the DNA. These may have specific effects on metabolism, causing organ damage or disease. Scientists of Helmholtz Zentrum München have now identified 28 DNA alterations associated with ...

Why fad diets work well for some, but not others

Jul 28, 2010

Ever notice some people seem to eat anything they want and never gain a pound, while others seem to gain weight just by looking at fattening foods? You may be seeing things correctly after all. According to research published ...

Transformational fruit fly genome catalog completed

Feb 08, 2012

Scientists searching for the genomics version of the holy grail – more insight into predicting how an animal's genes affect physical or behavioral traits – now have a reference manual that should ...

Muscular disease research advanced with flies and mice

Mar 20, 2014

Indian researchers using flies (Drosophila) and West Australian researchers using mice to study neuromuscular disease are part of an exciting collaboration improving research into muscular diseases and ageing.

Recommended for you

DNA signature found in ice storm babies

Sep 29, 2014

The number of days an expectant mother was deprived of electricity during Quebec's Ice Storm (1998) predicts the epigenetic profile of her child, a new study finds.

User comments