Model sheds new light on sports-related brain injuries

April 29, 2014

A new study has provided insight into the behavioral damage caused by repeated blows to the head. The research provides a foundation for scientists to better understand and potentially develop new ways to detect and prevent the repetitive sports injuries that can lead to the condition known as chronic traumatic encephalopathy (CTE).

The research – which appears online this week in the Journal of Neurotrauma – shows that mice with mild, repetitive traumatic brain injury (TBI) develop many of the same , such as difficultly sleeping, memory problems, depression, judgment and risk-taking issues, that have been associated with the condition in humans.

One of the barriers to potential treatments for TBI and CTE is that no model of the disease exists. Animal equivalents of human diseases are a critical early-stage tool in the scientific process of understanding a condition, developing new ways to diagnose it, and evaluating experimental therapies.

"This new model captures both the clinical aspects of repetitive mild TBI and CTE," said Anthony L. Petraglia, M.D., a neurosurgeon with the University of Rochester School of Medicine and Dentistry and lead author of the study. "While public awareness of the long-term health risk of blows to the head is growing rapidly, our ability to scientifically study the fundamental neurological impact of mild brain injuries has lagged."

There has been a great deal of discussion in recent years regarding concussions as a result of blows to the head in sports. An estimated 3.8 million sports-related concussions occur every year. Mild traumatic brain injury is also becoming more common in military personnel deployed in combat zones. Over time, the frequency and degree of these injuries can lead short and long-term neurological impairment and, in extreme examples, to CTE, a form of .

The experiments described in the study were designed in a manner that simulates the type of mild TBI that may occur in sports or other blows to the head. The researchers evaluated the mice's performance in a series of tasks designed to measure behavior. These included tests to measure spatial and learning memory, anxiety and risk-taking behavior, the presence of depression-like behavior, sleep disturbances, and the electrical activity of their brain. The mice with repetitive mild TBI did poorly in every test and this poor performance persisted over time.

"These results resemble the spectrum of neuro-behavioral problems that have been reported and observed in individuals who have sustained multiple mild TBI and those who were subsequently diagnosed with CTE, including behaviors such as poor judgment, risk taking, and depression," said Petraglia.

Petraglia and his colleagues also used the model to examine the damage that was occurring in the brains of the mice over time. The results, which will be published in a forthcoming paper, provide insight on the interaction between the brains repair mechanisms – in the forms of astrocytes and microglia – and the protein tau, which can have a toxic effect when triggered by mild .

"Undoubtedly further work is needed," said Petraglia. "However, this study serves as a good starting point and it is hoped that with continued investigation this novel model will allow for a controlled, mechanistic analysis of repetitive mild TBI and CTE in the future, because it is the first to encapsulate the spectrum of this human phenomenon."

Explore further: Mild traumatic brain injury may alter brain's neuronal circuit excitability and contribute to brain network dysfunction

Related Stories

NIH, NFL team up to take on concussion research

December 16, 2013

(HealthDay)—The U.S. National Institutes of Health is teaming up with the National Football League on research into the long-term effects of repeated head injuries and improving concussion diagnosis.

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.