Transplanting interneurons: Getting the right mix

by John Hewitt weblog
Transplanting Interneurons: getting the right mix
Interneurons migrate into the Cortex from the Medial Ganglionic Eminence. Credit: neurowiki2012

(Medical Xpress)—Despite early optimistic studies, the promise of curing neurological conditions using transplants remains unfulfilled. While researchers have exhaustively cataloged different types of cells in the brain, and also the largely biochemical issues underlying common diseases, neural repair shops are still a ways off. Fortunately, significant progress is being made towards identifying the broader operant principles that might bear on any one disease work-around. A review just published in Science focuses on recent work on transplanting interneurons—a diverse family of cells united by their mutual love of inhibition and their local loyalty. The UCLA-based authors, reach the conclusion that the fate of transplanted neurons ultimately depends less on the influences of the new host environment, and more on the early upbringing of the cells within the donor embryo.

Interneurons are born in the lateral (LGE) and medial ganglionic eminence (MGE). Those that eventually colonize the cortex need to migrate a fairly long distance tangentially to get there, but once they arrive, they prefer to extend only local connections. By comparison, the excitatory pyramidal which end up sending long-range projections, are born within the cortex itself. Researchers have found that only those from the MGE have what it takes to make long migratory journeys. LGE neurons, when transplanted into postnatal host brains, remain in tight clumps whereas those from the MGE disperse throughout the cortex.

More importantly, it is now appreciated that transplanted interneurons closely follow cell-intrinsic programs rather than relying on host-specific cues to govern their survival and differentiation. The once popular conception of a life and death competition for neurotrophic factors, if at play here at all, seems to be a minor influence. Herds of transplanted neurons are still thinned in the host, for example, but those that die off do so asynchronously from the endogenous interneurons, and in line with their own internal programming. Scrutinous cell accounting has shown that after transplantation, the total number of interneurons within the host tissue greatly exceeds the nominal amount normally found.

An excess balance of inhibitory cells has been seen as desireable from the point of view of treating mismatches in excitability of the kind found in diseases like epilepsy. It is important to realize however, that binary electrical tallies only represent one aspect of neuronal function. Furthermore, in epilepsy, we might more generally view exciteability as just the readily observeable tip of underlying metabolic imbalance. None the less, suppression of spontaneous seizures in a mouse channelopathy model (mutant for a potassium channel known as Kv1.1) has been acheived with interneuron tranplants. In yet another case of nomenclature gone wild, this particular mutant has been associated with human interneuronopathies leading to severe tonic-clonic seizures.

Synapse constitution—number, type or strength of synapses—can be tough to quantify objectively and exactly. There have been indications that transplanted interneurons make 3X the number of synapses as native , but they are only one-third as strong as would be normally expected. The keyword here is "strong." There can be any combination of synaptic capabilities involved in this idea, things like electrical amplititude, reliability, or persistence at a high rate of firing all come into play in the idea of strength. The Chandelier cells control the axon initial segments well known and idiosyncratic interneuron known as the Chandelier cell, for example, commands access to the highly coveted axon initial segment where it effectively exercises complete veto over its associated pyramidal cell.

To increase the efficiency and fidelity of harvesting exact precursor cell subtypes, techniques like fluorescence-activated cell sorting (FACS) have been used in sample processing. Flourescent proteins under the control of forebrain or MGE specific promotors can be used to select individual cells types for later transplantation. To bias cells into somatostatin or parvalbumin-expressing populations, for example, wild-type MGE cells can then be exposed to sonic hedgehog or other fate-ruling factors.

Transplanting different kinds of cells together will probably be necessary to properly treat many diseases. Even non-neural cells like astrocytes and microglia may be critical to have in the mix. Exciting results obtained in mice last year, indicate that these cell types can thrive not just when transplanted across individuals but across species. The goal for the present time is to define good protocols for integrating one cell type first. Nimble cells that migrate well within the host, yet confine their influence to the local environment might be the most sensible place to start.

More information: Interneurons from Embryonic Development to Cell-Based Therapy, Science 11 April 2014: Vol. 344 no. 6180. DOI: 10.1126/science.1240622

add to favorites email to friend print save as pdf

Related Stories

Human brain cells developed in lab, grow in mice

May 08, 2013

A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice, UC San Francisco researchers have discovered, raising hope that these cells might one day be used to treat ...

Researchers cure epilepsy in mice using brain cells

May 05, 2013

UCSF scientists controlled seizures in epileptic mice with a one-time transplantation of medial ganglionic eminence (MGE) cells, which inhibit signaling in overactive nerve circuits, into the hippocampus, a brain region associated ...

SIGNAL found to enhance survival of new brain cells

Nov 11, 2013

A specialized type of brain cell that tamps down stem cell activity ironically, perhaps, encourages the survival of the stem cells' progeny, Johns Hopkins researchers report. Understanding how these new brain ...

Recommended for you

Birthday matters for wiring-up the brain's vision centers

3 hours ago

Researchers at the University of California, San Diego School of Medicine have evidence suggesting that neurons in the developing brains of mice are guided by a simple but elegant birth order rule that allows them to find ...

How is depression related to dementia?

23 hours ago

A new study by neuropsychiatric researchers at Rush University Medical Center gives insight into the relationship between depression and dementia. The study is published in the July 30, 2014, online issue of Neurology, the me ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet Apr 14, 2014
"...neural repair shops are still a ways off."

No cell is without a repair shop.
Some repairs (of neuronal DNA) are very special indeed. The before and after of these repairs is the difference between whether anything you experience is stored as memory.

Before damage occurs the gene expressions for specific neuronal segmental DNA sequences will always be the same. After a flawless repair, the specific neuronal segmental DNA sequence that was repaired will exhibit a change in the gene expressions in comparison to the undamaged version.

As far as memory and learning are concern, the difference in expressions can be compared to a ship of Theseus. No paradox exists because if the flawless repair were indistinguishable from the original no memory or learning is possible.

Repair shops are right up there with metabolism, reproduction, and growth as far as importance and defining what life is. No cell is without one.

johnhew
not rated yet Apr 15, 2014
How much do they charge?