Well-known cancer gene NRAS produces five variants, study finds

A new study shows that a gene discovered 30 years ago and now known to play a fundamental role in cancer development produces five different gene variants (called isoforms), rather than just the one original form, as thought.

The study of the NRAS gene by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) identified four previously unknown variants that the NRAS gene produces.

The finding might help improve drugs for cancers in which aberrant activation of NRAS plays a crucial role. It also suggests that NRAS might affect additional target molecules in cells, the researchers say.

The isoforms show striking differences in size, abundance and effects. For example, the historically known protein (isoform 1) is 189 amino-acids long, while one of the newly discovered variants, isoform 5, is only 20 amino-acids long.

The study is published in the Proceedings of the National Academy of Sciences.

"We believe that the existence of these isoforms may be one reason why NRAS inhibitors have so far been unsuccessful," says corresponding author Albert de la Chapelle, MD, PhD, professor of Medicine and the Leonard J. Immke Jr. and Charlotte L. Immke Chair in Cancer Research.

Co-senior author Clara D. Bloomfield, MD, Distinguished University Professor and Ohio State University Cancer Scholar, notes that one of the newly discovered isoforms might play a greater role in the development of some cancers than the known protein itself.

"Targeting the NRAS pathway may have been unsuccessful in the past because we were unaware of the existence of additional targets of these novel isoforms," says Bloomfield, who is also senior adviser to the OSUCCC – James and holds the William Greenville Pace III Endowed Chair in Cancer Research.

"The discovery of these isoforms might open a new chapter in the study of NRAS," says first author Ann-Kathrin Eisfeld, MD, a postdoctoral fellow in the laboratories of de la Chapelle and of Bloomfield. "Knowing that these isoforms exist may lead to the development of drugs that specifically decrease or increase the expression of one of them and provide more effective treatment for patients."

For this study, de la Chapelle, Eisfeld and their colleagues analyzed expression of the NRAS isoforms in a variety of normal and matched tumor samples. Key technical findings include:

  • The isoforms showed modest but significant differences in expression in normal and malignant samples;
  • Each isoform had different effects on NRAS target molecules;
  • Isoform 5 was the most aggressive variant in proliferation and transformation assays;
  • Isoforms 3 and 5, the smallest of the isoforms (40 and 20 amino acids respectively), were found in both the cell nucleus and cytoplasm.

More information: Paper: NRAS isoforms differentially affect downstream pathways, cell growth, and cell transformation, www.pnas.org/content/early/201… /1401727111.abstract

add to favorites email to friend print save as pdf

Related Stories

Tipping the balance between senescence and proliferation

Nov 15, 2013

An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Recommended for you

Why we should vaccinate boys against HPV as well as girls

1 hour ago

Gillian Prue, from the School of Nursing and Midwifery at Queen's University of Belfast, says that the human papillomavirus (HPV) infection is common in men and can lead to genital warts and the development of some head and ...

Generation of tanners see spike in deadly melanoma

13 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

13 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

User comments