'Achilles heel' of pancreatic cancer identified

A research team at Georgetown Lombardi Comprehensive Cancer Center reports that inhibiting a single protein completely shuts down growth of pancreatic cancer, a highly lethal disease with no effective therapy.

Their study, published online today in Science Signaling, demonstrates in animal models and in human cancer cells that while suppressing Yes-associated protein (Yap) did not prevent pancreatic cancer from first developing, it stopped any further growth.

"We believe this is the true Achilles heel of pancreatic cancer, because knocking out Yap crushes this really aggressive cancer. This appears to be the critical switch that promotes cancer growth and progression," says the study's senior investigator, Chunling Yi, PhD, an assistant professor of oncology at Georgetown Lombardi.

Yi added that because Yap is over-expressed in other cancers, such as lung, liver and stomach tumors, researchers are already working on small molecule drugs that will inhibit activity of the protein and its partnering molecules.

The study was conducted in mouse models of (PDAC), which accounts for all but five percent of human pancreatic cancers. These mice have a mutation in the KRAS gene, as well as a mutation in their p53 gene. "More than 95 percent of pancreatic cancer patients have a KRAS mutation and about 75 percent have a mutation in p53, so these mice provide a natural model of the human disease," she says.

Because it has been very difficult to devise drugs that target either KRAS or p53, in this study the researchers looked for other potential druggable targets involved in uncontrolled growth of pancreatic cancer.

They found that Yap was over-expressed in both mouse models and human samples of PDAC, and they discovered that the KRAS mutation found in most pancreatic cancer activates Yap. "The KRAS mutation uses Yap to make grow, so shutting down Yap defuses the mutated gene's activity," Yi says.

Yap also shuts down activity of the p53 oncogene, though the link between p53 and Yap is not yet known.

"KRAS and are two of the most mutated genes in human cancers, so our hope is that a drug that inhibits Yap will work in patients—who have both —and in other cancers with one or both mutations," Yi says.

add to favorites email to friend print save as pdf

Related Stories

EGFR essential for the development of pancreatic cancer

Sep 15, 2011

The epidermal growth factor receptor (EGFR) gene is essential for KRAS-driven pancreatic cancer development, according to study results presented at the Second AACR International Conference on Frontiers in Basic Cancer Research, ...

Gene linked to pancreatic cancer growth, study finds

Jan 31, 2012

A mutant protein found in nearly all pancreatic cancers plays a role not only in the cancer's development but in its continued growth, according to a new study from University of Michigan Comprehensive Cancer ...

Recommended for you

Blood biomarker may detect lung cancer

9 hours ago

A new study shows that patients with stage I to stage III non-small cell lung cancer have different metabolite profiles in their blood than those of patients who are at risk but do not have lung cancer. The study abstract ...

ACG: Recent increase in incidence of young-onset CRC

Oct 20, 2014

(HealthDay)—The incidence of young-onset colorectal cancer (CRC) is increasing, and the disease is more aggressive pathologically. These findings are being presented at the annual meeting of the American ...

User comments