Autism-related protein shown to play vital role in addiction

brain

In a paper published in the latest issue of the neuroscience journal Neuron, McLean Hospital investigators report that a gene essential for normal brain development, and previously linked to Autism Spectrum Disorders, also plays a critical role in addiction-related behaviors.

"In our lab, we investigate the brain mechanisms behind drug addiction – a common and devastating disease with limited treatment options," explained Christopher Cowan, PhD, director of the Integrated Neurobiology Laboratory at McLean and an associate professor of Psychiatry at Harvard Medical School. "Chronic exposure to drugs of abuse causes changes in the brain that could underlie the transition from casual drug use to addiction. By discovering the brain molecules that control the development of drug addiction, we hope to identify new treatment approaches."

The Cowan lab team, led by Laura Smith, PhD, an instructor of Psychiatry at Harvard Medical School, used animal models to show that the fragile X mental retardation protein, or FMRP, plays a critical role in the development of addiction-related behaviors. FMRP is also the protein that is missing in Fragile X Syndrome, the leading single-gene cause of autism and intellectual disability. Consistent with its important role in brain function, the team found that cocaine utilizes FMRP to facilitate brain changes involved in addiction-related behaviors.

Cowan, whose work tends to focus on identifying novel genes related to conditions such as autism and , explained that FMRP controls the remodeling and strength of connections in the brain during normal development. Their current findings reveal that FMRP plays a critical role in the changes in brain connections that occur following repeated cocaine exposure.

This video is not supported by your browser at this time.
Watch Cowan and Smith discuss their latest findings

"We know that experiences are able to modify the brain in important ways. Some of these brain changes help us, by allowing us to learn and remember. Other changes are harmful, such as those that occur in individuals struggling with drug abuse," noted Cowan and Smith. "While FMRP allows individuals to learn and remember things in their environment properly, it also controls how the responds to cocaine and ends up strengthening drug behaviors. By better understanding FMRP's role in this process, we may someday be able to suggest effective therapeutic options to prevent or reverse these changes."

add to favorites email to friend print save as pdf

Related Stories

Gene family mutation, autism linked

Jan 28, 2014

(Medical Xpress)—Harvard Medical School researchers at McLean Hospital have found that a gene family linked to autism, EphB, is essential for proper brain wiring during development. The findings suggest ...

Recommended for you

Surprising new role for calcium in sensing pain

20 minutes ago

When you accidentally touch a hot oven, you rapidly pull your hand away. Although scientists know the basic neural circuits involved in sensing and responding to such painful stimuli, they are still sorting ...

Neurons in human skin perform advanced calculations

20 hours ago

Neurons in human skin perform advanced calculations, previously believed that only the brain could perform. This is according to a study from Umeå University in Sweden published in the journal Nature Ne ...

Memory in silent neurons

Aug 31, 2014

When we learn, we associate a sensory experience either with other stimuli or with a certain type of behavior. The neurons in the cerebral cortex that transmit the information modify the synaptic connections ...

User comments